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Preface

Geometry with an Introduction to Cosmic Topology approaches geometry through
the lens of questions that have ignited the imagination of stargazers since antiquity.
What is the shape of the universe? Does the universe have an edge? Is it infinitely
big?

This text develops non-Euclidean geometry and geometry on surfaces at a
level appropriate for undergraduate students who have completed a multivariable
calculus course and are ready for a course in which to practice the habits of thought
needed in advanced courses of the undergraduate mathematics curriculum. The
text is also suited to independent study, with essays and discussions throughout.

Mathematicians and cosmologists have expended considerable amounts of
effort investigating the shape of the universe, and this field of research is called
cosmic topology. Geometry plays a fundamental role in this research. Under basic
assumptions about the nature of space, there is a simple relationship between
the geometry of the universe and its shape, and there are just three possibilities
for the type of geometry: hyperbolic geometry, elliptic geometry, and Euclidean
geometry. These are the geometries we study in this text.

Chapters 2 through 7 contain the core mathematical content. The text follows
the Erlangen Program, which develops geometry in terms of a space and a group of
transformations of that space. Chapter 2 focuses on the complex plane, the space
on which we build two-dimensional geometry. Chapter 3 details transformations
of the plane, including Möbius transformations. This chapter marks the heart
of the text, and the inversions in Section 3.2 mark the heart of the chapter. All
non-Euclidean transformations in the text are built from inversions. We formally
define geometry in Chapter 4, and pursue hyperbolic and elliptc geometry in
Chapters 5 and 6, respectively. Chapter 7 begins by extending these geometries
to different curvature scales. Section 7.4 presents a unified family of geometries
on all curvature scales, emphasizing key results common to them all. Section 7.5
provides an informal development of the topology of surfaces, and Section 7.6
relates the topology of surfaces to geometry, culminating with the Gauss-Bonnet
formula. Section 7.7 discusses quotient spaces, and presents an important tool of
cosmic topology, the Dirichlet domain.

Two longer essays bookend the core content. Chapter 1 introduces the geo-
metric perspective taken in this text. In my experience it is very helpful to spend
time discussing this content in class. The Coneland and Saddleland activities
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(Example 1.3.5 and Example 1.3.7) have proven particularly helpful for motivating
the content of the text. In Chapter 8, after having developed two-dimensional
non-Euclidean geometry and the topology of surfaces, we glance meaningfully at
the present state of research in cosmic topology. Section 8.1 offers a brief survey of
three-dimensional geometry and 3-manifolds, which provide possible shapes of the
universe. Sections 8.2 and 8.3 present two research programs in cosmic topology:
cosmic crystallography and circles-in-the-sky. Measurements taken and analyzed
over the last twenty years have greatly altered the way many cosmologists view
the universe, and the text ends with a discussion of our present understanding of
the state of the universe.

Compass and ruler constructions play a visible role in the text, primarily
because inversions are emphasized as the basic building blocks of transformations.
Constructions are used in some proofs (such as the Fundamental Theorem of
Möbius Transformations) and as a guide to definitions (such as the arc-length dif-
ferential in the hyperbolic plane). We encourage readers to practice constructions
as they read along, either with compass and ruler on paper, or with software such
as The Geometer’s Sketchpad or Geogebra. Some Geometer’s Sketchpad templates
and activites related to the text can be found at the text’s website.

Reading the text online. An online text is fabulous at linking content, but we
emphasize that this text is meant to be read. It was written to tell a mathematical
story. It is not meant to be a collection of theorems and examples to be consulted
as a reference. As such, online readers of this text are encouraged to turn the
pages using the “arrow” buttons on the page as opposed to clicking on section
links. Read the content slowly, participate in the examples, and work on the
exercises. Grapple with the ideas, and ask questions. Feel free to email the author
with questions or comments about the material.

Changes from the previously published version. For those familiar with
the oringial version of the text published by Jones & Bartlett, we note a few
changes in the current edition. First, the numbering scheme has changed, so
Example and Theorem and Figure numbers will not match the old hard copy. Of
course the numbering schemes on the website and the new print options of the text
do agree. Second, several exercises have been added. In sections with additional
exercises, the new ones typically appear at the end of the section. Finally, Chapter
7 has been reorganized in an effort to place more emphasis on the family (Xk, Gk),
and the key theorems common to all these geometries. This family now receives
its own section, Section 7.4. The previous Section 7.4 (Observing Curvature in
a Universe) has been folded into Section 7.3. Finally, the essays in Chapter 8
on cosmic topology and our understanding of the universe have been updated to
include research done since the original publication of this text, some of which
is due to sharper measurements of the temperature of the cosmic microwave
background radiation obtained with the launch of the Planck satellite in 2009.

http://mphitchman.github.io
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1

An Invitation to Geometry

How can it be that mathematics, being after all a product of hu-
man thought which is independent of experience, is so admirably
appropriate to the objects of reality?

—Albert Einstein

Out of nothing I have created a strange new universe.
—János Bolyai

1.1 Introduction
Imagine you are a two-dimensional being living in a two-dimensional universe.
Mathematicians in this universe often represent its shape as an infinite plane,
exactly like the xy-plane you’ve used as the canvas in your calculus courses.

Your two-dimensional self has been taught in geometry that the angles of any
triangle sum to 180◦. You may have even constructed some triangles to check.
Builders use the Pythagorean theorem to check whether two walls meet at right
angles, and houses are sturdy.

ca

b

Figure 1.1.1 Measure a, b, and c and check whether a2 + b2 = c2. If equality
holds, the corner is square!

The infinite plane model of the two-dimensional universe works well enough for
most purposes, but cosmologists and mathematicians, who notice that everything
within the universe is finite, consider the possibility that the universe itself is finite.
Would a finite universe have a boundary? Can it have an edge, a point beyond
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2 CHAPTER 1. AN INVITATION TO GEOMETRY

which one cannot travel? This possibility is unappealing because a boundary
point would be physically different from the rest of space. But how can a finite
universe have no boundary?

In a stroke as bold as it is simple, a two-dimensional mathematician suggests
that the universe looks like a rectangular region with opposite edges identified.

Consider a flat, two-dimensional rectangle. In fact, visualize a tablet screen.
Now imagine that you are playing a video game called Asteroids. As you shoot
the asteroids and move your ship around the screen, you find that if you go off the
top of the screen your ship reappears on the bottom; and if you go off the screen
to the left you reappear on the right. In Figure 1.1.2 there are just five asteroids.
One has partially moved off the top of the screen and reappeared below, while a
second is half way off the right hand “edge” and is reappearing to the left.

Figure 1.1.2 A finite two-dimensional world with no boundary.
Thus, the top edge of the rectangle has been identified, point by point, with

the bottom edge. In three dimensions one can physically achieve this identification,
or gluing, of the edges. In particular, one can bend the rectangle to produce a
cylinder, being careful to join only the top and bottom edges together, and not
any other points. The left and right edges of the rectangle have now become the
left and right circles of the cylinder, which themselves get identified, point by
point. Bend the cylinder to achieve this second gluing, and one obtains a donut,
also called a torus.

Figure 1.1.3 The video screen in Figure 1.1.2 is equivalent to a torus.
Of course your two-dimensional self would not be able to see this torus surface

in 3-space, but you could understand the space perfectly well in its rectangle-with-
edges-identified form. It is clearly a finite area universe without any edge.

A sphere, like the surface of a beach ball, is another finite area two-dimensional
surface without any edge. A bug cruising around on the surface of a sphere will
observe that locally the world looks like a flat plane, and that the surface has no
edges.

Consideration of a finite-area universe leads to questions about the type of
geometry that applies to the universe. Let’s look at a sphere. On small scales
Euclidean geometry works well enough: small triangles have angle sum essentially
equal to 180◦, which is a defining feature of Euclidean geometry. But on a larger
scale, things go awry. A very large triangle drawn on the surface of the sphere
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has an angle sum far exceeding 180◦. (By triangle, we mean three points on the
surface, together with three paths of shortest distance between the points. We’ll
discuss this more carefully later.)

Consider the triangle formed by the north pole and two points on the equator
in Figure 1.1.4. The angle at each point on the equator is 90◦, so the total angle
sum of the triangle exceeds 180◦ by the amount of the angle at the north pole.
We conclude that a non-Euclidean geometry applies to the sphere on a global
scale.

Figure 1.1.4 A triangle on a sphere.
In fact, there is a wonderful relationship between the topology (shape) of a

surface, and the type of geometry that it inherits, and a primary goal of this book
is to arrive at this relationship, given by the pristine Gauss-Bonnet equation

kA = 2πχ.

We won’t explain this equation here, but we will point out that geometry is on
the left side of the equation, and topology is on the right. So, if a two-dimensional
being can deduce what sort of global geometry holds in her world, she can greatly
reduce the possible shapes for her universe. Our immediate task in the text is to
study the other, non-Euclidean types of geometry that may apply on surfaces.

1.2 A Brief History of Geometry
Geometry is one of the oldest branches of mathematics, and most important
among texts is Euclid’s Elements. His text begins with 23 definitions, 5 postulates,
and 5 common notions. From there Euclid starts proving results about geometry
using a rigorous logical method, and many of us have been asked to do the same
in high school.

Euclid’s Elements served as the text on geometry for over 2000 years, and it
has been admired as a brilliant work in logical reasoning. But one of Euclid’s five
postulates was also the center of a hot debate. It was this debate that ultimately
led to the non-Euclidean geometries that can be applied to different surfaces.

Here are Euclid’s five postulates:

1. One can draw a straight line from any point to any point.

2. One can produce a finite straight line continuously in a straight line.

3. One can describe a circle with any center and radius.

4. All right angles equal one another.
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5. If a straight line falling on two straight lines makes the interior angles on
the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which the angles are less than two right
angles.

Does one postulate not look like the others? The first four postulates are
short, simple, and intuitive. Well, the second might seem a bit odd, but all Euclid
is saying here is that you can produce a line segment to any length you want.
However, the 5th one, called the parallel postulate, is not short or simple; it
sounds more like something you would try to prove than something you would
take as given.

Indeed, the parallel postulate immediately gave philosophers and other thinkers
fits, and many tried to prove that the fifth postulate followed from the first four,
to no avail. Euclid himself may have been bothered at some level by the parallel
postulate since he avoids using it until the proof of the 29th proposition in his
text.

In trying to make sense of the parallel postulate, many equivalent statements
emerged. The two equivalent statements most relevant to our study are these:

5′. Given a line and a point not on the line, there is exactly one line
through the point that does not intersect the given line.

5′′. The sum of the angles of any triangle is 180◦.

Reformulation 5′ of the parallel postulate is called Playfair’s Axiom after the
Scottish mathematician John Playfair (1748-1819). This version of the fifth
postulate will be the one we alter in order to produce non-Euclidean geometry.

The parallel postulate debate came to a head in the early 19th century. Farkas
Bolyai (1775-1856) of Hungary spent much of his life on the problem of trying to
prove the parallel postulate from the other four. He failed, and he fretted when
his son János (1802-1860) started following down the same tormented path. In
an oft-quoted letter, the father begged the son to end the obsession:

For God’s sake, I beseech you, give it up. Fear it no less than the
sensual passions because it too may take all your time and deprive
you of your health, peace of mind and happiness in life.1

But János continued to work on the problem, as did the Russian mathematician
Nikolai Lobachevsky (1792-1856). They independently discovered that a well-
defined geometry is possible in which the first four postulates hold, but the
fifth doesn’t. In particular, they demonstrated that the fifth postulate is not a
necessary consequence of the first four.

In this text we will study two types of non-Euclidean geometry. The first type
is called hyperbolic geometry, and is the geometry that Bolyai and Lobachevsky
discovered. (The great Carl Friedrich Gauss (1777-1855) had also discovered this
geometry; however, he did not publish his work because he feared it would be
too controversial for the establishment.) In hyperbolic geometry, Euclid’s fifth
postulate is replaced by this:

1See for instance, Martin Gardner’s book The Colossal Book of Mathematics, W.W. Norton
& Company (2001), page 176.



SECTION 1.2. A BRIEF HISTORY OF GEOMETRY 5

5H. Given a line and a point not on the line, there are at least two
lines through the point that do not intersect the given line.

In hyperbolic geometry, the sum of the angles of any triangle is less than 180◦, a
fact we prove in Chapter 5.

The second type of non-Euclidean geometry in this text is called elliptic
geometry, which models geometry on the sphere. In this geometry, Euclid’s fifth
postulate is replaced by this:

5E. Given a line and a point not on the line, there are zero lines
through the point that do not intersect the given line.

In elliptic geometry, the sum of the angles of any triangle is greater than 180◦, a
fact we prove in Chapter 6.

The Pythagorean Theorem. The celebrated Pythagorean theorem depends
upon the parallel postulate, so it is a theorem of Euclidean geometry. However,
we will encounter non-Euclidean variations of this theorem in Chapters 5 and 6,
and present a unified Pythagorean theorem in Chapter 7, a result that appeared
recently in [20].

The Pythagorean theorem appears as Proposition 47 at the end of Book I
of Euclid’s Elements, and we present Euclid’s proof below. The Pythagorean
theorem is fundamental to the systems of measurement we utilize in this text,
in both Euclidean and non-Eucidean geometries. We also remark that the final
proposition of Book I, Proposition 48, gives the converse that builders use: If we
measure the legs of a triangle and find that c2 = a2 + b2 then the angle opposite
c is right. The interested reader can find an online version of Euclid’s Elements
here [29].

Theorem 1.2.1 The Pythagorean Theorem. In right-angled triangles the
square on the side opposite the right angle equals the sum of the squares on the
sides containing the right angle.

Proof. Suppose we have right triangle ABC as in Figure 1.2.2 with right
angle at C, and side lengths a, b, and c, opposite corners A,B and C, respectively.
In the figure we have extended squares from each leg of the triangle, and labeled
various corners. We have also constructed the line through C parallel to AD,
and let L and M denote the points of intersection of this line with AB and DE,
respectively. One can check that ∆KAB is congruent to ∆CAD. Moreover, the
area of ∆KAB is one half the area of the square AH. This is the case because
they have equal base (segment KA) and equal altitude (segment AC). By a
similar argument, the area of ∆DAC is one half the area of the parallelogram
AM . This means that square AH and parallelogram AM have equal areas, the
value of which is b2.

One may proceed as above to argue that the areas of square BG and paral-
lelogram BM are also equal, with value a2. Since the area of square BD, which
equals c2, is the sum of the two parallelogram areas, it follows that a2 + b2 = c2.

�
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B

E

L

M

F

A

D

K

H

C

G

Figure 1.2.2 Proving the Pythagorean theorem
The arrival of non-Euclidean geometry soon caused a stir in circles outside the

mathematics community. Fyodor Dostoevsky thought non-Euclidean geometry
was interesting enough to include in The Brothers Karamazov, first published in
1880. Early in the novel two of the brothers, Ivan and Alyosha, get reacquainted
at a tavern. Ivan discourages his younger brother from thinking about whether
God exists, arguing that if one cannot fathom non-Euclidean geometry, then one
has no hope of understanding questions about God.2

One of the first challenges of non-Euclidean geometry was to determine its
logical consistency. By changing Euclid’s parallel postulate, was a system created
that led to contradictory theorems? In 1868, the Italian mathematician Enrico
Beltrami (1835-1900) showed that the new non-Euclidean geometry could be
constructed within the Euclidean plane so that, as long as Euclidean geometry was
consistent, non-Euclidean geometry would be consistent as well. Non-Euclidean
geometry was thus placed on solid ground.

This text does not develop geometry as Euclid, Lobachevsky, and Bolyai did.
Instead, we will approach the subject as the German mathematician Felix Klein
(1849-1925) did.

Whereas Euclid’s approach to geometry was additive (he started with basic
definitions and axioms and proceeded to build a sequence of results depending on
previous ones), Klein’s approach was subtractive. He started with a space and a
group of allowable transformations of that space. He then threw out all concepts
that did not remain unchanged under these transformations. Geometry, to Klein,
is the study of objects and functions that remain unchanged under allowable
transformations.

Klein’s approach to geometry, called the Erlangen Program after the uni-
versity at which he worked at the time, has the benefit that all three geometries
(Euclidean, hyperbolic and elliptic) emerge as special cases from a general space
and a general set of transformations.

The next three chapters will be devoted to making sense of and working
through the preceding two paragraphs.

2See, for instance, The Brothers Karamazov, Fyodor Dostoevsky (a new translation by
Richard Pevear and Larissa Volokhonsky), North Point Press (1990), page 235.
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Like so much of mathematics, the development of non-Euclidean geometry
anticipated applications. Albert Einstein’s theory of special relativity illustrates
the power of Klein’s approach to geometry. Special relativity, says Einstein, is
derived from the notion that the laws of nature are invariant with respect to
Lorentz transformations.3

Even with non-Euclidean geometry in hand, Euclidean geometry remains
central to modern mathematics because it is an excellent model for our local
geometry. The angles of a triangle drawn on this paper do add up to 180◦. Even
“galactic” triangles determined by the positions of three nearby stars have angle
sum indistinguishable from 180◦.

However, on a larger scale, things might be different.
Maybe we live in a universe that looks flat (i.e., Euclidean) on smallish scales

but is curved globally. This is not so hard to believe. A bug living in a field on the
surface of the Earth might reasonably conclude he is living on an infinite plane.
The bug cannot sense the fact that his flat, visible world is just a small patch of a
curved surface (Earth) living in three-dimensional space. Likewise, our apparently
Euclidean three-dimensional universe might be curving in some unseen fourth
dimension so that the global geometry of the universe might be non-Euclidean.

Under reasonable assumptions about space, hyperbolic, elliptic, and Euclidean
geometry are the only three possibilities for the global geometry of our universe.
Researchers have spent significant time poring over cosmological data in hopes
of deciding which geometry is ours. Deducing the geometry of the universe can
tell us much about the shape of the universe and perhaps whether it is finite.
If the universe is elliptic, then it must be finite in volume. If it is Euclidean or
hyperbolic, then it can be either finite or infinite. Moreover, each geometry type
corresponds to a class of possible shapes. And, if that isn’t exciting enough, the
overall geometry of the universe may be fundamentally connected to the fate of
the universe. Clearly there is no more grand application of geometry than to the
fate of the universe!

Exercises
1. Use Euclid’s parallel postulate to prove the alternate interior angles theorem.

That is, in Figure 1.2.3(a), assume the line BD is parallel to the line AC.
Prove that ∠BAC = ∠ABD.

2. Use Euclid’s parallel postulate and the previous problem to prove that the
sum of the angles of any triangle is 180◦. You may find Figure 1.2.3(b) helpful,
where segment CD is parallel to segment AB.

A

B

C

D

(a)
A

B

C

D

(b)

Figure 1.2.3 Two consequences of the parallel postulate.

3Relativity: The Special and General Theory, Crown Publications Inc (1961), p. 148.
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1.3 Geometry on Surfaces: A First Look
Think for a minute about the space we live in. Think about objects that live
in our space. Do the features of objects change when they move around in our
space? If I pick up this paper and move it across the room, will it shrink? Will it
become a broom?

If you draw a triangle on this page, the angles of the triangle will add to 180◦.
In fact, any triangle drawn anywhere on the page has this property. Euclidean
geometry on this flat page (a portion of the plane) is homogeneous: the local
geometry of the plane is the same at all points. Our three-dimensional space
appears to be homogeneous as well. This is nice, for it means that if we buy a
5 ft3 freezer at the appliance store, it doesn’t shrink to 0.5 ft3 when we get it
home. A sphere is another example of a homogenous surface. A two-dimensional
bug living on the surface of a sphere could not tell the difference (geometrically)
between any two points on the sphere.

The surface of a donut in three-dimensional space (see Figure 1.3.1) is not
homogeneous, and a two-dimensional bug living on this surface could tell the
difference between various points. One approach to discovering differences in
geometry involves triangles.

Figure 1.3.1 This torus surface is not homogeneous.
It is an important matter to decide what we mean, exactly, by a triangle on

a surface. A triangle consists of three points and three edges connecting these
points. An edge connecting point A to point B is drawn to represent the path of
shortest distance between A and B. Such a path is called a geodesic. For the
two-dimensional bug, a “straight line” from A to B is simply the shortest path
from A to B.

On a sphere, geodesics follow great circles. A great circle is a circle drawn on
the surface of the sphere whose center (in three-dimensional space) corresponds
to the center of the sphere. Put another way, a great circle is a circle of maximum
diameter drawn on the sphere. The circles a and b in Figure 1.3.2 are great circles,
but circle c is not.

a

b

c

Figure 1.3.2 Geodesics on the sphere are great circles.
In the Euclidean plane, geodesics are Euclidean lines. One way to determine a

geodesic on a surface physically is to pin some string at A and draw the string
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tight on the surface to a point B. The taut string will follow the geodesic from A
to B. In Figure 1.3.3 we have drawn geodesic triangles on three different surfaces.

Figure 1.3.3 Depending on the shape of the surface, geodesic triangles can have
angle sum greater than, less than, or equal to 180◦.

Getting back to the donut, a two-dimensional bug could use triangles to tell
the difference between a “convex” point on an outer wall, and a “saddle-shaped”
point on an inner wall (see Figure 1.3.1). A bug could draw a triangle about
the convex point, determine the angle sum, and then move around the surface
to a saddle-shaped point, and determine the angle sum of a new triangle (whose
legs are the same length as before). The bug would scratch her head at the
different angle sums before realizing she’d stumbled upon something big. She’d
go home, write up the result, emphasizing the fact that a triangle in the first
“convex” region will have angle sum greater than 180◦, while a triangle in the
“saddle-shaped” region will have angle sum less than 180◦. This happy bug will
conclude her donut surface is not homogeneous. She will then sit back and watch
the accolades pour in. Perhaps even a Nobel prize. Thus, small triangles and
their angles can help a two-dimensional bug distinguish points on a surface.

The donut surface is not homogeneous, so let’s build one that is.

Example 1.3.4 The Flat Torus.

Consider again the world of Figure 1.1.2. This world is called a flat
torus. At every spot in this world, the pilot of the ship would report flat
surroundings (triangle angles add to 180◦). Unlike the donut surface living
in three dimensions, the flat torus is homogeneous. Locally, geometry is
the same at every point, and thanks to a triangle check, this geometry is
Euclidean. But the world as a whole is much different than the Euclidean
plane. For instance, if the pilot of the ship has a powerful enough telescope,
he’d be able to see the back of his ship. Of course, if the ship had windows
just so, he’d be able to see the back of his head. The flat torus is a finite,
Euclidean two-dimensional world without any boundary.

Example 1.3.5 Coneland.

Here we build cones from flat wedges, and measure angles of some triangles.



10 CHAPTER 1. AN INVITATION TO GEOMETRY

CC

A

B

θ

Figure 1.3.6 A triangle on a cone.

a. Begin with a circular disk with a wedge removed, like a pizza missing
a slice or two. Joining the two radial edges produces a cone. Try it
with a cone of your own to make sure it works. Now, with the cone
flat again, pick three points, labeled A, B, and C, such that C is
on the radial edge. This means that in this flattened version of the
cone, point C actually appears twice: once on each radial edge, as in
Figure 1.3.6. These two representatives for C should get identified
when you join the radial edges.

b. Draw the segments connecting the three points. You should get a
triangle with the tip of the cone in its interior. (This triangle should
actually look like a triangle if you re-form the cone.) If you don’t get
the tip of the cone on the inside of the triangle, adjust the points
accordingly.

c. With your protractor, carefully measure the angle θ subtended by
the circular sector. To emphasize θ’s role in the shape of the cone,
we let S(θ) denote the cone surface determined by θ.

d. With your protractor, carefully measure the three angles of your
triangle. The angle at point C is the sum of the angles formed by
the triangle legs and the radial segments. Let ∆ denote the sum of
these three angles.

e. State a conjecture about the relationship between the angle θ and ∆,
the sum of the angles of the triangle. Your conjecture can be in the
form of an equation. Then prove your conjecture. Hint: if you draw
a segment connecting the 2 copies of point C, what is the angle sum
of the quadrilateral ABCC?

Example 1.3.7 Saddleland.

Repeat the previous exercise but with circle wedges having θ > 2π. Identi-
fying the radial edges in this case produces a saddle-shaped surface. [To
create such a circle wedge we can tape together two wedges of equal radius.
One idea: Start with a disk with one radial cut, and a wedge of equal radius.
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Tape one radial edge of the wedge to one of the slit radial edges of the
disk. Then, identifying the other radial edges should produce Saddleland.]

Remember, a homogeneous surface is a space that has the same local geometry
at every point. Our flat torus is homogeneous, having Euclidean geometry at every
point. However, our cones S(θ) in the previous exercises are not homogeneous
(unless θ happens to be 2π). If a triangle in S(θ) does not contain the tip of the
cone in its interior, then the angles of the triangle will add to π radians, but if
the triangle does contain the tip of the cone in its interior, then the angle sum
will not be π radians. A two-dimensional bug, then, could conclude that S(θ) is
not homogeneous.

c

a

b

c

a

b

H

Figure 1.3.8 A hexagonal video screen

Example 1.3.9 A non-Euclidean surface.

Consider the surface obtained by identifying the edges of the hexagon as
indicated in Figure 1.3.8. In particular, the edges are matched according
to their labels and arrow orientation. So, if a ship flies off the hexagonal
screen at a spot on the edge marked a, say, then it reappears at the
matching spot on the other edge marked a.

Suppose the pilot of a ship wants to fly around one of the corners of the
hexagon. If she begins at point H, say, and flies counterclockwise around
the upper right corner as indicated in the diagram, she would fly off the
screen at the top near the start of an a edge. So, as she made her journey,
she would reappear in the lower left corner near the start of the other a
edge. Continuing around she would complete her journey after circling
this second corner.

However, the angle of each corner is 120◦, and gluing them together
will create a cone point, as pictured below. Similarly, she would find that
the other corners of the hexagon meet in groups of two, creating two
additional cone points. As with the Coneland Example 1.3.5, the pilot can
distinguish a corner point from an interior point here. She can look at
triangles: a triangle containing one of the cone points will have angle sum
greater than 180◦; any other triangle will have angle sum equal to 180◦.
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a

c

c

H
So the surface is not homogeneous, if it is drawn in the plane. However,

the surface does admit a homogeneous geometry. We can get rid of the
cone points if we can increase each corner angle of the hexagon to 180◦.
Then, two corners would come together to form a perfect 360◦ patch about
the point.

But how can we increase the corner angles? Put the hexagon on the
sphere! Imagine stretching the hexagon onto the northern hemisphere of
a sphere (see Figure 1.3.10). In this case we can think of the 6 points
of our hexagon as lying on the equator. Then each corner angle is 180◦,
each edge is still a line (geodesic), and when we glue the edges, each pair
of corner angles adds up to exactly 360◦, so the surface is homogeneous.
The homogeneous geometry of this surface is the geometry of the sphere
(elliptic geometry), not the geometry of the plane (Euclidean geometry).

b

ac

ca

b

Figure 1.3.10 A surface with homogeneous elliptic geometry.
It turns out every surface can be given one of three types of homogeneous

geometry: Euclidean, hyperbolic, or elliptic. We will return to the geometry of
surfaces (and of our universe) after we develop hyperbolic and elliptic geometry.
If it doesn’t make a whole lot of sense right now, don’t sweat it, but please use
these facts as motivation for learning about these non-Euclidean geometries.

Exercises
1. Work through the Coneland Example 1.3.5.

2. Work through the Saddleland Example 1.3.7.

3. Circumference vs Radius in Coneland and Saddleland. In addition to triangles,
a two-dimensional bug can use circles to screen for different geometries. In
particular, a bug can study the relationship between the radius and the
circumference of a circle. To make sure we think like the bug, here’s how
we define a circle on a surface: Given a point P on the surface, and a real
number r > 0, the circle centered at P with radius r is the set of all points r
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units away from P , where the distance between two points is the length of
the shortest path connecting them (the geodesic).

a. Pick your favorite circle in the plane. What is the relationship between
the circle’s radius and circumference? Is your answer true for any circle
in the plane?

b. Consider the Coneland surface of Example 1.3.5. Construct a circle
centered at the tip of the cone and derive a relationship between its
circumference and its radius. Is C = 2πr here? If not, which is true:
C > 2πr or C < 2πr?

c. Consider the Saddleland surface of Example 1.3.7. Construct a circle
centered at the tip of the saddle and derive a relationship between its
circumference and its radius. Is C = 2πr here? If not, which is true:
C > 2πr or C < 2πr?
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2

The Complex Plane

To study geometry using Klein’s Erlangen Program, we need to define a space
and a group of transformations of the space. Our space will be the complex plane.

2.1 Basic Notions
The set of complex numbers is obtained algebraically by adjoining the number i
to the set R of real numbers, where i is defined by the property that i2 = −1. We
will take a geometric approach and define a complex number to be an ordered
pair (x, y) of real numbers. We let C denote the set of all complex numbers,

C = {(x, y) | x, y ∈ R}.

Given the complex number z = (x, y), x is called the real part of z, denoted
Re(z); and y is called the imaginary part of z, denoted Im(z). The set of real
numbers is a subset of C under the identification x↔ (x, 0), for any real number
x.

Addition in C is componentwise,

(x, y) + (s, t) = (x+ s, y + t),

and if k is a real number, we define scalar multiplication by

k · (x, y) = (kx, ky).

Within this framework, i = (0, 1), meaning that any complex number (x, y)
can be expressed as x+ yi as suggested here:

(x, y) = (x, 0) + (0, y)
= x(1, 0) + y(0, 1)
= x+ yi.

The expression x+ yi is called the Cartesian form of the complex number.
This form can be helpful when doing arithmetic of complex numbers, but it can
also be a bit gangly. We often let a single letter such as z or w represent a

15
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complex number. So, z = x+ yi means that the complex number we’re calling z
corresponds to the point (x, y) in the plane.

It is sometimes helpful to view a complex number as a vector, and complex
addition corresponds to vector addition in the plane. The same holds for scalar
multiplication. For instance, in Figure 2.1.1 we have represented z = 2 + i,
w = −1 + 1.5i, as well as z + w = 1 + 2.5i, as vectors from the origin to these
points in C. The complex number z −w can be represented by the vector from w
to z in the plane.

z

w

z + w

i

1

z

w z − w

Figure 2.1.1 Complex numbers as vectors in the plane.
We define complex multiplication using the fact that i2 = −1.

(x+ yi) · (s+ ti) = xs+ ysi+ xti+ yti2

= (xs− yt) + (ys+ xt)i.

The modulus of z = x+ yi, denoted |z|, is given by

|z| =
√
x2 + y2.

Note that |z| gives the Euclidean distance of z to the point (0,0).
The conjugate of z = x+ yi, denoted z, is

z = x− yi.

In the exercises the reader is asked to prove various useful properties of the
modulus and conjugate.

Example 2.1.2 Arithmetic of complex numbers.

Suppose z = 3− 4i and w = 2 + 7i.
Then z + w = 5 + 3i, and

z · w = (3− 4i)(2 + 7i)
= 6 + 28− 8i+ 21i
= 34 + 13i.

A few other computations:

4z = 12− 16i

|z| =
√

32 + (−4)2 = 5
zw = 34− 13i.
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Exercises
1. In each case, determine z + w, sz, |z|, and z · w.

a. z = 5 + 2i, s = −4, w = −1 + 2i

b. z = 3i, s = 1/2, w = −3 + 2i

c. z = 1 + i, s = 0.6, w = 1− i

2. Show that z · z = |z|2, where z is the conjugate of z.

3. Suppose z = x + yi and w = s + ti are two complex numbers. Prove the
following properties of the conjugate and the modulus.

a. |w · z| = |w| · |z|.

b. zw = z · w.

c. z + w = z + w.

d. z + z = 2Re(z). (Hence, z + z is a real number.)

e. z − z = 2Im(z)i.

f. |z| = |z|.

4. APythagorean triple consists of three integers (a, b, c) such that a2+b2 = c2.
We can use complex numbers to generate Pythagorean triples. Suppose
z = x+ yi where x and y are positive integers. Let

a = Re(z2) b = Im(z2) c = zz.

a. Prove that a2 + b2 = c2.

b. Find the complex number z = x+ yi that generates the famous triple
(3,4,5).

c. Find the complex number that generates the triple (5,12,13).

d. Find five other Pythagorean triples, generated using complex numbers
of the form z = x + yi, where x and y are positive integers with no
common divisors.

2.2 Polar Form of a Complex Number
A point (x, y) in the plane can be represented in polar form (r, θ) according to
the relationships in Figure 2.2.1.

(x, y)
r

θ

x = r cos(θ)
y = r sin(θ)

Figure 2.2.1 Polar coordinates of a point in the plane
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Using these relationships, we can rewrite

x+ yi = r cos(θ) + r sin(θ)i
= r(cos(θ) + i sin(θ)).

This leads us to make the following definition. For any real number θ, we
define

eiθ = cos(θ) + i sin(θ).

For instance, eiπ/2 = cos(π/2) + i sin(π/2) = 0 + i · 1 = i.
Similarly, ei0 = cos(0) + i sin(0) = 1, and it’s a quick check to see that

eiπ = −1, which leads to a simple equation involving the most famous numbers
in mathematics (except 8), truly an all-star equation:

eiπ + 1 = 0.

If z = x+ yi and (x, y) has polar form (r, θ) then z = reiθ is called the polar
form of z. The non-negative scalar |r| is the modulus of z, and the angle θ is
called the argument of z, denoted arg(z).

Example 2.2.2 Exploring the polar form.

On the left side of the following diagram, we plot the points z = 2eiπ/4, w =
3eiπ/2, v = −2eiπ/6, u = 3e−iπ/3.

w

z

v

u

θα

−3 + 4i

4

3

r

To convert z = −3 + 4i to polar form, refer to the right side of
the diagram. We note that r =

√
9 + 16 = 5, and tan(α) = 4/3, so

θ = π − tan−1(4/3) ≈ 2.21 radians. Thus,

−3 + 4i = 5ei(π−tan−1(4/3)) ≈ 5e2.21i.

Theorem 2.2.3 The product of two complex numbers in polar form is given by

reiθ · seiβ = (rs)ei(θ+β).

Proof. We use the definition of the complex exponential and some trigono-
metric identities.

reiθ · seiβ = r(cos θ + i sin θ) · s(cosβ + i sin β)
= (rs)(cos θ + i sin θ) · (cosβ + i sin β)
= rs[cos θ cosβ − sin θ sin β + (cos θ sin β + sin θ cosβ)i]
= rs[cos(θ + β) + sin(θ + β)i]
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= rs[ei(θ+β)].

�
Thus, the product of two complex numbers is obtained by multiplying their

magnitudes and adding their arguments, and

arg(zw) = arg(z) + arg(w),

where the equation is taken modulo 2π. That is, depending on our choices for the
arguments, we have arg(vw) = arg(v) + arg(w) + 2πk for some integer k.

Example 2.2.4 Polar form with r ≥ 0.

When representing a complex number z in polar form as z = reiθ, we may
assume that r is non-negative. If r < 0, then

reiθ = −|r|eiθ

= (eiπ) · |r|eiθ since − 1 = eiπ

= |r|ei(θ+π), by Theorem 2.2.3.

Thus, by adding π to the angle if necessary, we may always assume
that z = reiθ where r is non-negative.

Exercises
1. Convert the following points to polar form and plot them: 3 + i, −1 − 2i,

3− 4i, 7, 002, 001, and −4i.

2. Express the following points in Cartesian form and plot them: z = 2eiπ/3,
w = −2eiπ/4, u = 4ei5π/3, and z · u.

3. Modify the all-star equation to involve 8. In particular, write an expression
involving e, i, π, 1, and 8, that equals 0. You may use no other numbers, and
certainly not 3.

4. If z = reiθ, prove that z = re−iθ.

2.3 Division and Angle Measure
The division of the complex number z by w 6= 0, denoted z

w , is the complex
number u that satisfies the equation z = w · u.

For instance, 1
i = −i because 1 = i · (−i).

In practice, division of complex numbers is not a guessing game, but can be
done by multiplying the top and bottom of the quotient by the conjugate of the
bottom expression.
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Example 2.3.1 Division in Cartesian form.

We convert the following quotient to Cartesian form:

2 + i

3 + 2i = 2 + i

3 + 2i ·
3− 2i
3− 2i

= (6 + 2) + (−4 + 3)i
9 + 4

= 8− i
13

= 8
13 −

1
13 i.

Example 2.3.2 Division in polar form.

Suppose we wish to find z/w where z = reiθ and w = seiβ 6= 0. The reader
can check that

1
w

= 1
s
e−iβ .

Then we may apply Theorem 2.2.3 to obtain the following result:

z

w
= z · 1

w

= reiθ · 1
s
e−iβ

= r

s
ei(θ−β).

So,

arg
(
z

w

)
= arg(z)− arg(w)

where equality is taken modulo 2π.
Thus, when dividing by complex numbers, we can first convert to polar

form if it is convenient. For instance,

1 + i

−3 + 3i =
√

2eiπ/4√
18ei3π/4

= 1
3e
−iπ/2 = −1

3 i.

Angle Measure. Given two rays L1 and L2 having common initial point,
we let ∠(L1, L2) denote the angle between rays L1 and L2, measured from
L1 to L2. We may rotate ray L1 onto ray L2 in either a counterclockwise
direction or a clockwise direction. We adopt the convention that angles measured
counterclockwise are positive, and angles measured clockwise are negative, and
admit that angles are only well-defined up to multiples of 2π. Notice that

∠(L1, L2) = −∠(L2, L1).
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To compute ∠(L1, L2) where z0 is the common initial point of the rays, let z1
be any point on L1, and z2 any point on L2. Then

∠(L1, L2) = arg
(
z2 − z0

z1 − z0

)
= arg(z2 − z0)− arg(z1 − z0).

Example 2.3.3 The angle between two rays.

Suppose L1 and L2 are rays emanating from 2 +2i. Ray L1 proceeds along
the line y = x and L2 proceeds along y = 3− x/2 as pictured.

L1

L2

θ2 + 2i
3 + 3i

4 + i

To compute the angle θ in the diagram, we choose z1 = 3 + 3i and
z2 = 4 + i. Then

∠(L1, L2) = arg(2− i)− arg(1 + i) = − tan−1(1/2)− π/4 ≈ −71.6◦.

That is, the angle from L1 to L2 is 71.6◦ in the clockwise direction.

The angle determined by three points.

If u, v, and w are three complex numbers, let ∠uvw denote the angle θ
from ray −→vu to −→vw. In particular,

∠uvw = θ = arg
(
w − v
u− v

)
.

θ
u

v

w

For instance, if u = 1 on the positive real axis, v = 0 is the origin in C, and z
is any point in C, then ∠uvz = arg(z).

Exercises

1. Express 1
x+yi in the form a+ bi.

2. Express these fractions in Cartesian form or polar form, whichever seems more
convenient.

1
2i ,

1
1 + i

,
4 + i

1− 2i ,
2

3 + i
.
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3. Prove that |z/w| = |z|/|w|, and that z/w = z/w.

4. Suppose z = reiθ and w = seiα are as shown below. Let u = z ·w. Prove that
∆01z and ∆0wu are similar triangles.

0 1

z

w

u

5. Determine the angle ∠uvw where u = 2 + i, v = 1 + 2i, and w = −1 + i.

6. Suppose z is a point with positive imaginary component on the unit circle
shown below, a = 1 and b = −1. Use the angle formula to prove that angle
∠bza = π/2.

0b

z

a

2.4 Complex Expressions
In this section we look at some equations and inequalities that will come up
throughout the text.

Example 2.4.1 Line equations.

The standard form for the equation of a line in the xy-plane is ax+by+d = 0.
This line may be expressed via the complex variable z = x+ yi. For an
arbitrary complex number β = s+ ti, note that

βz + βz =
[
(sx− ty) + (sy + tx)i

]
+
[
(sx− ty)− (sy + tx)i

]
= 2sx− 2ty.

It follows that the line ax + by + d = 0 can be represented by the
equation

αz + αz + d = 0 (equation of a line)

where α = 1
2 (a− bi) is a complex constant and d is a real number.

Conversely, for any complex number α and real number d, the equation

αz + αz + d = 0
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determines a line in C.

We may also view any line in C as the collection of points equidistant from
two given points.

Theorem 2.4.2 Any line in C can be expressed by the equation |z − γ| = |z − β|
for suitably chosen points γ and β in C, and the set of all points (Euclidean)
equidistant from distinct points γ and β forms a line.

Proof. Given two points γ and β in C, z is equidistant from both if and only
if |z − γ|2 = |z − β|2. Expanding this equation, we obtain

(z − γ)(z − γ) = (z − β)(z − β)
|z|2 − γz − γz + |γ|2 = |z|2 − βz − βz + |β|2

(β − γ)z + (β − γ)z + (|γ|2 − |β|2) = 0.

This last equation has the form of a line, letting α = (β − γ) and d = |γ|2−|β|2.
Conversely, starting with a line we can find complex numbers γ and β that

do the trick. In particular, if the given line is the perpendicular bisector of the
segment γβ, then |z − γ| = |z − β| describes the line. We leave the details to the
reader. �

Example 2.4.3 Quadratic equations.

Suppose z0 is a complex constant and consider the equation z2 = z0. A
complex number z that satisfies this equation will be called a square root
of z0, and will be written as √z0.

If we view z0 = r0e
iθ0 in polar form with r0 ≥ 0, then a complex

number z = reiθ satisfies the equation z2 = z0 if and only if

reiθ · reiθ = r0e
iθ0 .

In other words, z satisfies the equation if and only if r2 = r0 and
2θ = θ0 (modulo 2π).

As long as r0 is greater than zero, we have two solutions to the equation,
so that z0 has two square roots:

±
√
r0e

iθ0/2.

For instance, z2 = i has two solutions. Since i = 1eiπ/2,
√
i = ±eiπ/4.

In Cartesian form,
√
i = ±(

√
2

2 +
√

2
2 i).

More generally, the complex quadratic equation αz2 + βz + γ = 0
where α, β, and γ are complex constants, will have one or two solutions.
This marks an important difference from the real case, where a quadratic
equation might not have any real solutions. In both cases we may use
the quadratic formula to hunt for roots, and in the complex case we have
solutions

z = −β ±
√
β2 − 4αγ

2α .
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For instance, z2 + 2z + 4 = 0 has two solutions:

z = −2±
√
−12

2 = −1±
√

3i

since
√
−1 = i.

Example 2.4.4 Solving a quadratic equation.

Consider the equation z2 − (3 + 3i)z = 2− 3i. To solve this equation for z
we first rewrite it as

z2 − (3 + 3i)z − (2− 3i) = 0.

We use the quadratic formula with α = 1, β = −(3+3i), and γ = −(2−3i),
to obtain the solution(s)

z =
3 + 3i±

√
(3 + 3i)2 + 4(2− 3i)

2

z = 3 + 3i±
√

8 + 6i
2 .

To determine the solutions in Cartesian form, we need to evaluate√
8 + 6i. We offer two approaches. The first approach considers the

following task: Set x + yi =
√

8 + 6i and solve for x and y directly by
squaring both sides to obtain a system of equations.

x+ yi =
√

8 + 6i
(x+ yi)2 = 8 + 6i

x2 − y2 + 2xyi = 8 + 6i.

Thus, we have two equations and two unknowns:

x2 − y2 = 8 (1)
2xy = 6. (2)

In fact, we also know that x2+y2 = |x+yi|2 = |(x+yi)2| = |8+6i| = 10,
giving us a third equation

x2 + y2 = 10. (3)

Adding equations (1) and (3) yields x2 = 9 so x = ±3. Substituting
x = 3 into equation (2) yields y = 1; substituting x = −3 into (2) yields
y = −1. Thus we have two solutions:

√
8 + 6i = ±(3 + i).

We may also use the polar form to determine
√

8 + 6i. Consider the
right triangle determined by the point 8 + 6i = 10eiθ pictured in the
following diagram.



SECTION 2.4. COMPLEX EXPRESSIONS 25

10

8 + 6i

θ

We know
√

8 + 6i = ±
√

10eiθ/2, so we want to find θ/2. Well, we can
determine tan(θ/2) easily enough using the half-angle formula

tan(θ/2) = sin(θ)
1 + cos(θ) .

The right triangle in the diagram shows us that sin(θ) = 3/5 and
cos(θ) = 4/5, so tan(θ/2) = 1/3. This means that any point reiθ/2 lives
on the line through the origin having slope 1/3, and can be described by
k(3 + i) for some scalar k. Since

√
8 + 6i has this form, it follows that√

8 + 6i = k(3 + i) for some k. Since |
√

8 + 6i| =
√

10, it follows that
|k(3 + i)| =

√
10, so k = ±1. In other words,

√
8 + 6i = ±(3 + i).

Now let’s return to the solution of the original quadratic equation in
this example:

z = 3 + 3i±
√

8 + 6i
2

z = 3 + 3i± (3 + i)
2 .

Thus, z = 3 + 2i or z = i.

Example 2.4.5 Circle equations.

If we let z = x+ yi and z0 = h+ ki, then the complex equation

|z − z0| = r (equation of a circle)

describes the circle in the plane centered at z0 with radius r > 0.
To see this, note that

|z − z0| = |(x− h) + (y − k)i|

=
√

(x− h)2 + (y − k)2.

So |z − z0| = r is equivalent to the equation (x− h)2 + (y − k)2 = r2

of the circle centered at z0 with radius r.
For instance, |z − 3− 2i| = 3 describes the set of all points that are 3

units away from 3 + 2i. All such z form a circle of radius 3 in the plane,
centered at the point (3, 2).
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Example 2.4.6 Complex expressions as regions.

Describe each complex expression below as a region in the plane.
a. |1/z| > 2.

Taking the reciprocal of both sides, we have |z| < 1/2, which is the
interior of the circle centered at 0 with radius 1/2.

b. Im(z) < Re(z).
Set z = x + yi in which case the inequality becomes y < x. This
inequality describes all points in the plane under the line y = x, as
pictured below.

c. Im(z) = |z|.
Setting z = x + yi, this equation is equivalent to y =

√
y2 + x2.

Squaring both sides we obtain 0 = x2, so that x = 0. It follows that
y =

√
y2 = |y| so the equation describes the points (0, y) with y ≥ 0.

These points determine a ray on the positive imaginary axis.

1
2

Im(z) <Re(z)

Im(z) = |z|

Moving forward, lines and circles will be especially important objects for us,
so we end the section with a summary of their descriptions in the complex plane.

Lines and circles in C.

Lines and circles in the plane can be expressed with a complex variable
z = x+ yi.

• The line ax + by + d = 0 in the plane can be represented by the
equation

αz + αz + d = 0

where α = 1
2 (a− bi) is a complex constant and d is a real number.

• The circle in the plane centered at z0 with radius r > 0 can be
represented by the equation

|z − z0| = r.

Exercises
1. Use a complex variable to describe the equation of the line y = mx + b.

Assume m 6= 0. In particular, show that this line is described by the equation

(m+ i)z + (m− i)z + 2b = 0.
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2. In each case, sketch the set of complex numbers z satisfying the given condition.
a. |z + i| = 3.

b. |z + i| = |z − i|.

c. Re(z) = 1.

d. |z/10 + 1− i| < 5.

e. Im(z) > Re(z).

f. Re(z) = |z − 2|.

3. Suppose u, v, w are three complex numbers not all on the same line. Prove
that any point z in C is uniquely determined by its distances from these three
points.

4. Find all solutions to the quadratic equation z2 + iz − (2 + 6i) = 0.
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3

Transformations

Transformations will be the focus of this chapter. They are functions first and
foremost, often used to push objects from one place in a space to a more convenient
place, but transformations do much more. They will be used to define different
geometries, and we will think of a transformation in terms of the sorts of objects
(and functions) that are unaffected by it.

3.1 Basic Transformations of C
We begin with a definition.

Definition 3.1.1 Given two sets A and B, a function f : A → B is called
one-to-one (or 1-1) if whenever a1 6= a2 in A, then f(a1) 6= f(a2) in B. The
function f is called onto if for any b in B there exists an element a in A such
that f(a) = b. A transformation on a set A is a function T : A → A that is
one-to-one and onto. ♦

Following are two schematics of functions. In the first case, f : A→ B is onto,
but not one-to-one. In the second case, g : A→ B is one-to-one, but not onto.

A B

f

A B

g

A transformation T of A has an inverse function, T−1, characterized by the
property that the compositions T−1 ◦ T (a) = a and T ◦ T−1(a) = a for all a in A.
The inverse function T−1 is itself a transformation of A and it “undoes” T in this
sense: For elements z and w in A, T−1(w) = z if and only if T (z) = w.

In this section we develop the following basic transformations of the plane, as
well as some of their important features.

29
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Basic Transformations of C.

• General linear transformation: T (z) = az + b, where a, b are in C
with a 6= 0.

• Special cases of general linear transformations:

◦ Translation by b: Tb(z) = z + b.
◦ Rotation by θ about 0: Rθ(z) = eiθz.
◦ Rotation by θ about z0: R(z) = eiθ(z − z0) + z0.
◦ Dilation by factor k > 0: T (z) = kz.

• Reflection across a line L: rL(z) = eiθz + b, where b is in C, and θ is
in R.

Example 3.1.2 Translation.

Consider the fixed complex number b, and define the function Tb : C→ C
by

Tb(z) = z + b.

The notation helps us remember that z is the variable, and b is a
complex constant. We will prove that Tb is a transformation, but this
fact can also be understood by visualizing the function. Each point in the
plane gets moved by the vector b, as suggested in the following diagram.

w

v

b
Tb(w)

Tb(v)

For instance, the origin gets moved to the point b, (i.e., Tb(0) = b), and
every other point in the plane gets moved the same amount and in the
same direction. It follows that two different points, such as v and w in the
diagram, cannot get moved to the same image point (thus, the function is
one-to-one). Also, any point in the plane is the image of some other point
(just follow the vector −b to find this “pre-image” point), so the function
is onto as well.

We now offer a formal argument that the translation Tb is a transfor-
mation. Recall, b is a fixed complex number.

That Tb is onto:
To show that Tb is onto, let w denote an arbitrary element of C. We

must find a complex number z such that Tb(z) = w. Let z = w − b. Then
Tb(z) = z + b = (w − b) + b = w. Thus, T is onto.

That Tb is one-to-one:
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To show that Tb is 1-1 we must show that if z1 6= z2 then Tb(z1) 6= Tb(z2).
We do so by proving the contrapositive. Recall, the contrapositive of a
statement of the form “If P is true then Q is true” is “If Q is false then P
is false.” These statements are logically equivalent, which means we may
prove one by proving the other. So, in the present case, the contrapositive
of “If z1 6= z2 then Tb(z1) 6= Tb(z2)” is “If Tb(z1) = Tb(z2), then z1 = z2.”
We now prove this statement.

Suppose z1 and z2 are two complex numbers such that Tb(z1) = Tb(z2).
Then z1 + b = z2 + b. Subtracting b from both sides we see that z1 = z2,
and this completes the proof.

Example 3.1.3 Rotation about the origin.

Let θ be an angle, and define Rθ : C→ C by Rθ(z) = eiθz.

z

Rθ(z)

θ

This transformation causes points in the plane to rotate about the
origin by the angle θ. (If θ > 0 the rotation is counterclockwise, and if
θ < 0 the rotation is clockwise.) To see this is the case, suppose z = reiβ ,
and notice that

Rθ(z) = eiθreiβ = rei(θ+β).

Example 3.1.4 Rotation about any point.

To achieve a rotation by angle θ about a general point z0, send points in
the plane on a three-leg journey: First, translate the plane so that the
center of rotation, z0, goes to the origin. The translation that does the
trick is T−z0 . Then rotate each point by θ about the origin (Rθ). Then
translate every point back (Tz0). This sequence of transformations has the
desired effect and can be tracked as follows:

z
T−z07−−−→ z − z0

Rθ7−−→ eiθ(z − z0)
Tz07−−→ eiθ(z − z0) + z0.

In other words, the desired rotation R is the composition Tz0 ◦Rθ ◦ T−z0

and
R(z) = eiθ(z − z0) + z0.

That the composition of these three transformations is itself a transfor-
mation follows from the next theorem.
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Theorem 3.1.5 If T and S are two transformations of the set A, then the
composition S ◦ T is also a transformation of the set A.

Proof. We must prove that S ◦ T : A→ A is 1-1 and onto.
That S ◦ T is onto:
Suppose c is in A. We must find an element a in A such that S ◦ T (a) = c.
Since S is onto, there exists some element b in A such that S(b) = c.
Since T is onto, there exists some element a in A such that T (a) = b.
Then S ◦ T (a) = S(b) = c, and we have demonstrated that S ◦ T is onto.
That S ◦ T is 1-1 :
Again, we prove the contrapositive. In particular, we show that if S ◦ T (a1) =

S ◦ T (a2) then a1 = a2.
If S(T (a1)) = S(T (a2)) then T (a1) = T (a2) since S is 1-1.
And T (a1) = T (a2) implies that a1 = a2 since T is 1-1.
Therefore, S ◦ T is 1-1. �

Example 3.1.6 Dilation.

Suppose k > 0 is a real number. The transformation T (z) = kz is called a
dilation; such a map either stretches or shrinks points in the plane along
rays emanating from the origin, depending on the value of k.

Indeed, if z = x+ yi, then T (z) = kx+ kyi, and z and T (z) are on the
same line through the origin. If k > 1 then T stretches points away from
the origin. If 0 < k < 1, then T shrinks points toward the origin. In either
case, such a map is called a dilation.

Given complex constants a, b with a 6= 0 the map T (z) = az + b is called a
general linear tranformation. We show in the following example that such a
map is indeed a transformation of C.

Example 3.1.7 General Linear Transformations.

Consider the general linear transformation T (z) = az + b, where a, b are
in C and a 6= 0. We show T is a transformation of C.

That T is onto:
Let w denote an arbitrary element of C. We must find a complex

number z such that T (z) = w. To find this z, we solve w = az + b for
z. So, z = 1

a (w − b) should work (since a 6= 0, z is a complex number).
Indeed, T ( 1

a (w − b)) = a ·
[ 1
a (w − b)

]
+ b = w. Thus, T is onto.

That T is one-to-one:
To show that T is 1-1 we show that if T (z1) = T (z2), then z1 = z2.
If z1 and z2 are two complex numbers such that T (z1) = T (z2), then

az1 + b = az2 + b. By subtracting b from both sides we see that az1 = az2,
and then dividing both sides by a (which we can do since a 6= 0), we see
that z1 = z2. Thus, T is 1-1 as well as onto, and we have proved T is a
transformation.

Note that dilations, rotations, and translations are all special types of
general linear transformations.
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We will often need to figure out how a transformation moves a collection of
points such as a triangle or a disk. As such, it is useful to introduce the following
notation, which uses the standard convention in set theory that a ∈ A means the
element a is a member of the set A.
Definition 3.1.8 Suppose T : A→ A is a transformation and D is a subset of A.
The image of D, denoted T (D), consists of all points T (x) such that x ∈ D. In
other words,

T (D) = {a ∈ A | a = T (x) for some x ∈ D}.

♦
For instance, if L is a line and Tb is translation by b, then it is reasonable

to expect that T (L) is also a line. If one translates a line in the plane, it ought
to keep its linear shape. In fact, lines are preserved under any general linear
transformation, as are circles.

Theorem 3.1.9 Suppose T is a general linear transformation.
a. T maps lines to lines.
b. T maps circles to circles.

Proof. a. We prove that if L is a line in C then so is T (L). A line L is
described by the line equation

αz + αz + d = 0

for some complex constant α and real number d. Suppose T (z) = az+b is a general
linear transformation (so a 6= 0). All the points in T (L) have the form w = az + b
where z satisfies the preceeding line equation. It follows that z = 1

a (w − b) and
when we plug this into the line equation we see that

α
w − b
a

+ α
w − b
a

+ d = 0

which can be rewritten

α

a
w + α

a
w + d− αb

a
− αb

a
= 0.

Now, for any complex number β the sum β + β is a real number, so in the
above expression, d− (αba + αb

a ) is a real number. Therefore, all w in T (L) satisfy
a line equation. That is, T (L) is a line.

b. The proof of this part is left as an exercise. �

Example 3.1.10 The image of a disk.

The image of the disk D = {z ∈ C | |z− 2i| ≤ 1} under the transformation
T : C→ C given by T (z) = 2z+ (4− i) is the disk T (D) centered at 4 + 3i
with radius 2 as pictured below.
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2i
T (D)

4 + 3i

2 4

D

4i

We will be interested in working with transformations that preserve angles
between smooth curves. A planar curve is a function r : [a, b]→ C mapping an
interval of real numbers into the plane. A curve is smooth if its derivative exists
and is nonzero at every point. Suppose r1 and r2 are two smooth curves in C
that intersect at a point. The angle between the curves measured from r1 to
r2, which we denote by ∠(r1, r2), is defined to be the angle between the tangent
lines at the point of intersection.

Definition 3.1.11 A transformation T of C preserves angles at point z0 if
∠(r1, r2) = ∠(T (r1), T (r2)) for all smooth curves r1 and r2 that intersect at z0.
A transformation T of C preserves angles if it preserves angles at all points in
C. A transformation T of C preserves angle magnitudes if, at any point in
C, |∠(r1, r2)| = |∠(T (r1), T (r2))| for all smooth curves r1 and r2 intersecting at
the point. ♦

Theorem 3.1.12 General linear transformations preserve angles.

Proof. Suppose T (z) = az + b where a 6= 0. Since the angle between curves is
defined to be the angle between their tangent lines, it is sufficient to check that
the angle between two lines is preserved. Suppose L1 and L2 intersect at z0, and
zi is on Li for i = 1, 2, as in the following diagram.

L1

L2

z0 z1

z2

Then,

∠(L1, L2) = arg
(
z2 − z0

z1 − z0

)
.

Since general linear transformations preserve lines, T (Li) is the line through
T (z0) and T (zi) for i = 1, 2 and it follows that

∠(T (L1), T (L2)) = arg
(
T (z2)− T (z0)
T (z1)− T (z0)

)
= arg

(
az2 + b− az0 − b
az1 + b− az0 − b

)
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= arg
(
z2 − z0

z1 − z0

)
= ∠(L1, L2).

Thus T preserves angles. �

Definition 3.1.13 A fixed point of a transformation T : A→ A is an element
a in the set A such that T (a) = a. ♦

If b 6= 0, the translation Tb of C has no fixed points. Rotations of C and
dilations of C have a single fixed point, and the general linear transformation
T (z) = az + b has one fixed point as long as a 6= 1. To find this fixed point, solve

z = az + b

for z. For instance, the fixed point of the transformation T (z) = 2z + (4− i) of
Example 3.1.10 is found by solving z = 2z + 4− i, for z, which yields z = −4 + i.
So, while the map T (z) = 2z + (4− i) moves the disk D in the example to the
disk T (D), the point −4 + i happily stays where it is.

Definition 3.1.14 A Euclidean isometry is a transformation T of C with the
feature that |T (z) − T (w)| = |z − w| for any points z and w in C. That is, a
Euclidean isometry preserves the Euclidean distance between any two points. ♦

Example 3.1.15 Some Euclidean isometries of C.

It is perhaps clear that translations, which move each point in the plane by
the same amount in the same direction, ought to be isometries. Rotations
are also isometries. In fact, the general linear transformation T (z) = az+b
will be a Euclidean isometry so long as |a| = 1:

|T (z)− T (w)| = |az + b− (aw + b)|
= |a(z − w)|
= |a||z − w|.

So, |T (z) − T (w)| = |z − w| ⇐⇒ |a| = 1. Translations and rotations
about a point in C are general linear transformations of this type, so they
are also Euclidean isometries.

Example 3.1.16 Reflection about a line.

Reflection about a line L is the transformation of C defined as follows:
Each point on L gets sent to itself, and if z is not on L, it gets sent to the
point z∗ such that line L is the perpendicular bisector of segment zz∗.

L

z

z∗
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Reflection about L is defined algebraically as follows. If L happens to
be the real axis then

rL(z) = z.

For any other line L we may arrive at a formula for reflection by rotating
and/or translating the line to the real axis, then taking the conjugate, and
then reversing the rotation and/or translation.

For instance, to describe reflection about the line y = x+ 5, we may
translate vertically by −5i, rotate by −π4 , reflect about the real axis, rotate
by π

4 , and finally translate by 5i to get the composition

z 7→ z − 5i
7→ e−

π
4 i(z − 5i)

7→ e−
π
4 i(z − 5i) = e

π
4 i(z + 5i)

7→ e
π
4 i · eπ4 i(z + 5i) = e

π
2 i(z + 5i)

7→ e
π
2 i(z + 5i) + 5i.

Simplifying (and noting that eπ2 i = i), the reflection about the line
L : y = x+ 5 has formula

rL(z) = iz − 5 + 5i.

In general, reflection across any line L in C will have the form

rL(z) = eiθz + b

for some angle θ and some complex constant b.

Reflections are more basic transformations than rotations and translations in
that the latter are simply careful compositions of reflections.

Theorem 3.1.17 A translation of C is the composition of reflections about two
parallel lines. A rotation of C about a point z0 is the composition of reflections
about two lines that intersect at z0.

Proof. Given the translation Tb(z) = z + b let L1 be the line through the
origin that is perpendicular to segment 0b as pictured in Figure 3.1.18(a). Let L2
be the line parallel to L1 through the midpoint of segment 0b. Also let ri denote
reflection about line Li for i = 1, 2.

Now, given any z in C, let L be the line through z that is parallel to vector b
(and hence perpendicular to L1 and L2). The image of z under the composition
r2 ◦ r1 will be on this line. To find the exact location, let z1 be the intersection
of L1 and L, and z2 the intersection of L2 and L, (see the figure). To reflect
z about L1 we need to translate it along L twice by the vector z1 − z. Thus
r1(z) = z + 2(z1 − z) = 2z1 − z.

Next, to reflect r1(z) about L2, we need to translate it along L twice by the
vector z2 − r1(z). Thus,

r2(r1(z)) = r1(z) + 2(z2 − r1(z)) = 2z2 − r1(z) = 2z2 − 2z1 + z.
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Notice from Figure 3.1.18(a) that z2−z1 is equal to b/2. Thus r2(r1(z)) = z+b
is translation by b.

Rotation about the point z0 by angle θ can be achieved by two reflections.
The first reflection is about the line L1 through z0 parallel to the real axis, and
the second reflection is about the line L2 that intersects L1 at z0 at an angle of
θ/2, as in Figure 3.1.18(b). In the exercises you will prove that this composition
of reflections does indeed give the desired rotation. �

0 b
2

z z1

r1(z)
z2

r2 ◦ r1(z)

b

L1 L2

L
L1

L2

θ
θ
2

z0

z

r1(z)

r2 ◦ r1(z)

(a) (b)

Figure 3.1.18 (a) Translations and (b) rotations are compositions of reflections.

We list some elementary features of reflections in the following theorem. We do
not prove them here but encourage you to work through the details. We will focus
our efforts in the following section on proving analogous features for inversion
transformations, which are reflections about circles.

Theorem 3.1.19 Reflection across a line is a Euclidean isometry. Moreover,
any reflection sends lines to lines, sends circles to circles, and preserves angle
magnitudes.

In fact, one can show that any Euclidean isometry can be expressed as the
composition of at most three reflections. See, for instance, Stillwell [10] for a proof
of this fact.
Theorem 3.1.20 Any Euclidean isometry is the composition of, at most, three
reflections.

Exercises
1. Is T (z) = −z a translation, dilation, rotation, or none of the above?

2. Show that the general linear transformation T (z) = az + b, where a and b are
complex constants, is the composition of a rotation, followed by a dilation,
followed by a translation.

3. Prove that a general linear transformation maps circles to circles.

4. Suppose T is a rotation by 30◦ about the point 2, and S is a rotation by 45◦
about the point 4. What is T ◦ S? Can you describe this transformation
geometrically?

5. Suppose T (z) = iz + 3 and S(z) = −iz + 2. Find T ◦ S. What type of
transformation is this?
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6. Find a formula for a transformation of C that maps the open disk D =
{z | |z| < 2} to the open disk D′ = {z | |z − i| < 5}. Is this transformation
unique, or can you think of two different ones that work?

7. Find a formula for reflection about the vertical line x = k.
8. Find a formula for reflection about the horizontal line y = k.

9. Find a formula for reflection in the plane about the line y = mx+ b, where
m 6= 0.

10. Prove that the construction in Figure 3.1.18(b) determines the desired rotation.

11. S(z) = kz is a dilation about the origin. Find an equation for a dilation of C
by factor k about an arbitrary point z0 in C.

3.2 Inversion
Inversion offers a way to reflect points across a circle. This transformation plays
a central role in visualizing the transformations of non-Euclidean geometry, and
this section is the foundation of much of what follows.

Suppose C is a circle with radius r and center z0. Inversion in the circle
C sends a point z 6= z0 to the point z∗ defined as follows: First, construct the ray
from z0 through z. Then, let z∗ be the unique point on this ray that satisfies the
equation

|z − z0| · |z∗ − z0| = r2.

The point z∗ is called the symmetric point to z with respect to C.

z0
z

z∗r

C

Inversion in a circle centered at z0 is a transformation on the set C − {z0}
consisting of all complex numbers except z0. We usually denote inversion in the
circle C by by iC(z) = z∗. In the next section we will discuss how to extend this
transformation in a way to include the center z0.

You will work through several features of circle inversions in the exercises,
including how to construct symmetry points with compass and ruler (see Fig-
ure 3.2.18). We note here that iC fixes all the points on the circle C, and points
inside the circle get mapped to points outside the circle and vice versa. The closer
z gets to the center of the circle, the further iC(z) gets from the circle.

Example 3.2.1 Inversion in the unit circle.

The unit circle in C, denoted S1, is the circle with center z0 = 0 and
radius r = 1. The equation for the point z∗ symmetric to a point z 6= 0
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with repsect to S1 thus reduces from |z − z0| · |z∗ − z0| = r2 to

|z| · |z∗| = 1.

Moreover, z∗ is just a scaled version of z since they are on the same
ray through the origin. That is, z∗ = kz for some positive real number
k. Plug this description of z∗ into the symmetry point equation to see
|z| · |kz| = 1, which implies k = 1/|z|2. Thus, z∗ = (1/|z|2)z. Moreover,
|z|2 = z · z, so inversion in the unit circle S1 may be written as

iS1(z) = 1/z.

The following formula for inversion about an arbitrary circle can be obtained by
composition of inversion in the unit circle with some general linear transformations.
The details are left to Exercise 3.2.1.

Inversion in the circle C centered at z0 with radius r.

Inversion in the circle C centered at z0 with radius r is given by

iC(z) = r2

(z − z0) + z0.

Example 3.2.2 Inverting some figures in a circle.

Below we have inverted a circle, the letter ‘M,’ and a small grid across the
circle C centered at z0. It looks as if the image of the circle is another
circle, which we will soon prove is the case. We will also prove that lines
not intersecting the center of C get inverted into circles. It follows that
the line segments in the ‘M’ get mapped to arcs of circles.

C

z0

p
iC(p) v

u

iC(v)

iC(u)

z

w

iC(z)

iC(w)

As Example 3.2.2 suggests, the distinction between lines and circles gets
muddied a bit by inversion. A line can get mapped to a circle and vice versa. In
what follows, it will be helpful to view reflection in a line and inversion in a circle
as special cases of the same general map. To arrive at this view we first make
lines and circles special cases of the same general type of figure.
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Definition 3.2.3 A cline is a Euclidean circle or line. Any cline can be described
algebraically by an equation of the form

czz + αz + αz + d = 0

where z = x+ yi is a complex variable, α is a complex constant, and c, d are real
numbers. If c = 0 the equation describes a line, and if c 6= 0 and |α|2 > cd the
equation describes a circle. ♦

The word “cline” (pronounced ‘Klein’) might seem a bit forced, but it represents
the shift in thinking we aim to achieve. We need to start thinking of lines and
circles as different manifestations of the same general class of objects. What class?
The class of clines.

Letting α = a+ bi and z = x+ yi, the cline equation czz + αz + αz + d = 0
can be written as

c(x2 + y2) + [ax− by + (ay + bx)i] + [ax− by − (ay + bx)i] + d = 0

which simplifies to
c(x2 + y2) + 2(ax− by) + d = 0.

If c = 0 then we have the equation of a line, and if c 6= 0 we have the equation
of a circle, so long as a2 + b2 > cd. In this case, the equation can be put into
standard form by completing the square. Let’s run through this.

If c 6= 0,

c(x2 + y2) + 2ax− 2by + d = 0

x2 + 2a
c
x+ y2 − 2b

c
y = −d

c

x2 + 2a
c
x+

(
a

c

)2
+ y2 − 2b

c
y +

(
b

c

)2
= −d

c
+
(a
c

)2
+
(
b

c

)2

(
x+ a

c

)2
+
(
y − b

c

)2
= a2 + b2 − cd

c2

and we have the equation of a circle so long as the right-hand side (the radius
term) is positive. In other words, we have the equation of a circle so long as
a2 + b2 > cd. We summarize this information below.

The cline equation.

Given c, d ∈ R, α ∈ C, if c 6= 0, the cline equation

czz + αz + αz + d = 0

gives a circle with center z0 and radius r, where

z0 =
(
− Re(α)

c
,
Im(α)
c

)
and r =

√
|α|2 − cd

c2
,

so long as |α|2 > cd. If c = 0, the cline equation gives a line.

From now on, if you read the phrase “inversion in a cline,” know that this
means inversion in a circle or reflection about a line, and if someone hands you a
cline C, you might say, “Thanks! By the way, is this a line or a circle?”
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We note here the construction of a cline through three points in C. This
construction is used often in later chapters to generate figures in non-Euclidean
geometry.

Theorem 3.2.4 There exists a unique cline through any three distinct points in
C.
Proof. Suppose u, v, and w are distinct complex numbers. If v is on
the line through u and w then this line is the unique cline through the three
points. Otherwise, the three points do not lie on a single line, and we may build a
circle through these three points as demonstrated in Figure 3.2.5. Construct the
perpendicular bisector to segment uv, and the perpendicular bisector to segment
vw. These bisectors will intersect because the three points are not collinear. If we
call the point of intersection z0, then the circle centered at z0 through w is the
unique cline through the three points. �

z0 w

u

v

Figure 3.2.5 Constructing the unique circle through three points not on a single
line.
Theorem 3.2.6 Inversion in a circle maps clines to clines. In particular, if a
cline goes through the center of the circle of inversion, its image will be a line;
otherwise the image of a cline will be a circle.

Proof. We prove the result in the case of inversion in the unit circle. The
general proof will then follow, since any inversion is the composition of this
particular inversion together with translations and dilations, which also preserve
clines by Theorem 3.1.9.

Suppose the cline C is described by the cline equation

czz + αz + αz + d = 0,

where c, d ∈ R, α ∈ C.
We want to show that the image of this cline under inversion in the unit circle,

iS1(C), is also a cline. Well, iS1(C) consists of all points w = 1/z, where z satisfies
the cline equation for C. We show that all such w live on a cline.

If z 6= 0 then we may multiply each side of the cline equation by 1/(z · z) to
obtain

c+ α
1
z

+ α
1
z

+ d
1
z

1
z

= 0.

But since w = 1/z and w = 1/z, this equation reduces to

c+ α · w + α · w + dww = 0,
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or
dww + α · w + α · w + c = 0.

Thus, the image points w form a cline equation. If d = 0 then the original
cline C passed through the origin, and the image cline is a line. If d 6= 0 then C
did not pass through the origin, and the image cline is a circle. (In fact, we must
also check that |α|2 > dc. This is the case because the original cline equation
ensures |α|2 > cd.) �

We will call two clines orthogonal if they intersect at right angles. For
instance, a line is orthogonal to a circle if and only if it goes through the center of
the circle. One very important feature of inversion in C is that clines orthogonal
to C get inverted to themselves. To prove this fact, we first prove the following
result, which can be found in Euclid’s Elements (Book III, Proposition 36).

Lemma 3.2.7 Suppose C is the circle with radius r centered at o, and p is a
point outside C. Let s = |p− o|. If a line through p intersects C at points m and
n, then

|p−m| · |p− n| = s2 − r2.

Proof. Suppose the line through p does not pass through the center of C, as
in the diagram below. Let q be the midpoint of segment mn, and let d = |q − o|
as in the diagram. Note also that the line through q and o is the perpendicular
bisector of segment mn. In particular, |m− q| = |q − n|.

s

r
d

p o

n

q

m

C

The Pythagorean theorem applied to ∆pqo gives

|p− q|2 + d2 = s2, (1)

and the Pythagorean theorem applied to ∆nqo gives

|q − n|2 + d2 = r2. (2)

By subtracting equation (2) from (1), we have

|p− q|2 − |q − n|2 = s2 − r2,

which factors as

(|p− q| − |q − n|)(|p− q|+ |q − n|) = s2 − r2.

Since |p− q| − |q − n| = |p−m| and |p− q|+ |q − n| = |p− n|, the result follows.
The case that the line through p goes through the center of C is left as an

exercise. �
We note that the quantity s2 − r2 in the previous lemma is often called the

power of the point p with respect to the circle C. That is, if circle C has radius r
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and a point p is a distance s from the center of C then the quantity s2 − r2 is
called the power of the point p.

Theorem 3.2.8 Suppose C is a circle in C centered at z0, and z 6= z0 is not on
C. A cline through z is orthogonal to C if and only if it goes through z∗, the point
symmetric to z with respect to C.

Proof. Assume C is the circle of radius r centered at z0, and D is a cline
through a point z 6= z0 not on C. Let z∗ denote the point symmetric to z with
respect to C.

First, suppose D is a line through z. A line through z passes through z∗ if
and only if it passes through the center of C, which is true if and only if the line
is orthogonal to C. Thus, the line D through z contains z∗ if and only if it is
orthogonal to C, and the theorem is proved in this case.

Now assume D is a circle through z. Let o and k denote the center and radius
of D, respectively. Set s = |zo − o|, and let t denote a point of intersection of C
and D as pictured below.

r k
s

t

z0 o

w

z

D

C

We must argue that C and D are orthogonal if and only if z∗ is on D. Now,
C and D are orthogonal if and only if ∠otz0 is right, which is the case if and only
if r2 = s2 − k2 by the Pythagorean theorem. Applying Lemma 3.2.7 to the point
z0 (which is outside D) and the line through z0 and z, we see that

|z0 − z| · |z0 − w| = s2 − k2, (1)

where w is the second point of intersection of the line with circle D.
Note also that as symmetric points, z and z∗ satisfy the equation

|z0 − z| · |z0 − z∗| = r2. (2)

Thus, if we assume z∗ is on D, then it must be equal to the point w, in which case
equations (1) and (2) above tell us s2−k2 = r2. It follows that D is orthogonal to
C. Conversely, if D is orthogonal to C, then s2 − k2 = r2, so |z0 − w| = |z0 − z∗|.
Since z∗ and w are both on the ray −→z0z it must be that z∗ = w. In other words,
z∗ is on D. �

Corollary 3.2.9 Inversion in C takes clines orthogonal to C to themselves.
Theorem 3.2.10 Inversion in a cline preserves angle magnitudes.

Proof. The result was stated for lines in Theorem 3.1.19. Here we assume C
is a circle of inversion. Consider two curves r1 and r2 that intersect at a point
z that is not on C or at the center of C. Recall, ∠(r1, r2) = ∠(L1, L2) where
Li is the line tangent to curve ri at z, for i = 1, 2. We may describe this angle
with two circles C1 and C2 tangent to the tangent lines L1 and L2, respectively,
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with the additional feature that the circles meet the circle of inversion C at right
angles, as in Figure 3.2.11. Indeed, C1 is the circle through z and z∗ whose center
is at the intersection of lines m1 and k, where m1 is the line through z that is
perpendicular to L1, and k is the perpendicular bisector of segment zz∗. Circle
C2 also goes through z and z∗, and its center is on the intersection of k and the
line m2 through z that is perpendicular to L2.

L1

L2

C

C1

C2

m1

m2

k

z
z∗

Figure 3.2.11 Inversion in a circle preserves angle magnitudes.
The advantage to describing ∠(L1, L2) with these circles is that the image

of the angle, ∠(iC(L1), iC(L2)), is also described by these two circles, at their
other intersection point z∗. Notice that these angles will have opposite signs. For
instance, in Figure 3.2.11, our initial angle is negative, described by sweeping
arc C1 clockwise onto C2, but in the image, we sweep iC(C1) counterclockwise
onto iC(C2). We leave it as an exercise for the reader to check that the angle of
intersection of C1 and C2 at z∗ is the same magnitude as the angle between C1
and C2 at z.

Now we show that inversion preserves angle magnitudes for angles that occur
on the circle C (i.e., z is on C). Let C ′ be a concentric circle to C. Then
iC(z) = S ◦ iC′ where S is a dilation of C whose fixed point is the common center
of circles C and C ′ (see Exercise 3.2.12). Since our angle is not on circle C ′, iC′
preserves the magnitude of the angle by reason of the preceding argument. The
dilation S preserves angles according to Theorem 3.1.12. Thus iC preserves angle
magnitudes as well. We leave the case of the angle occurring at the origin to the
next section. Bearing that exception in mind, this completes the proof. �

Another important feature of inversion in a cline is that it preserves symmetry
points.

Theorem 3.2.12 Inversion preserves symmetry points. Let iC denote
inversion in a cline C. If p and q are symmetric with respect to a cline D, then
iC(p) and iC(q) are symmetric with respect to the cline iC(D).

Proof. Assume C is the cline of inversion, and assume p and q are symmetric
with respect to a cline D as in Figure 3.2.13 (where C and D are represented as
circles).



SECTION 3.2. INVERSION 45

p

q
p∗

q∗

C

F E

D

D∗

E∗

F ∗

Figure 3.2.13 Inversion preserves symmetry points: If p and q are symmetric
with respect to D and we invert about cline C then the image points are symmetric
with respect to the image of D.

We may construct two clines E and F that go through p and q. In the figure,
cline E is a circle and cline F is a line. These clines intersect D at right angles
(Theorem 3.2.8). Since inversion preserves clines and angle magnitudes, we know
that E∗ = iC(E) and F ∗ = iC(F ) are clines intersecting the cline D∗ = iC(D) at
right angles. Both E∗ and F ∗ contain p∗ = iC(p), so they both contain the point
symmetric to p∗ with respect to D∗ (Theorem 3.2.8), but the only other point
common to both E∗ and F ∗ is q∗ = iC(q). Thus, p∗ and q∗ are symmetric with
respect to D∗. �

We close the section with two applications of inversion.

Theorem 3.2.14 Apollonian Circles Theorem. Let p, q be distinct points
in C, and k > 0 a positive real number. Let D consist of all points z in C such
that |z − p| = k|z − q|. Then D is a cline.

Proof. If k = 1, the set D is a Euclidean line, according to Theorem 2.4.2, so
we assume k 6= 1. Let C be the circle centered at p with radius 1. Suppose z is
an arbitrary point in the set D. Inverting about C, let z∗ = iC(z) and q∗ = iC(q)
as in the following diagram.

1

z

q

z∗

q∗p

C

Observe first that ∆pz∗q∗ and ∆pqz are similar.
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Indeed, |p− z| · |p− z∗| = 1 = |p− q| · |p− q∗| by the definition of the inversion
transformation, so we have equal side-length ratios

|p− z∗|
|p− q|

= |p− q
∗|

|p− z|
,

and the included angles are equal, ∠q∗pz∗ = ∠qpz.
It follows that

|z − q|
|p− q|

= |z
∗ − q∗|
|z∗ − p|

,

from which we derive

|z∗ − q∗| = |z∗ − p| · |z − q|
|p− q|

= [|z∗ − p| · |z − p|] · |z − q|
|z − p|

· 1
|p− q|

= 1 · 1
k
· 1
|p− q|

.

Thus, the set D of all points z satisfying |z − p| = k|z − q| has image iC(D)
under this inversion consisting of all points z∗ on a circle centered at q∗ with
radius (k|p − q|)−1. Since inversion preserves clines and p is not on iC(D), it
follows that D itself is a circle. �

As we let k run through all positive real numbers, we obtain a family of clines,
called the circles of Apollonius of the points p and q. We note that p and
q are symmetric with respect to each cline in this family (see Exercise 3.3.2).

L1

L

t

zoz1p q

C1

C

C2

Figure 3.2.15 Finding two points symmetric with respect to a line and circle.

Theorem 3.2.16 Suppose we have two clines that do not intersect, and at least
one of them is a circle. Then there exist two points, p and q, that are symmetric
with respect to both clines.

Proof. First, assume one cline is a line L, and the other is a circle C centered
at the point z0 as pictured in Figure 3.2.15. Let L1 be the line through z0 that
is perpendicular to L, and let z1 be the point of intersection of L and L1. Next,
construct the circle C1 having the diameter z0z1. Circle C1 intersects circle C
at some point, which we call t. Notice that ∠z0tz1 is right, and so the circle
C2 centered at z1 through t is orthogonal to C. Furthermore, the center of C2,
z1, lies on line L, so C2 is orthogonal to L. Let p and q be the two points at
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which C2 intersects L1. By construction, and by using Theorem 3.2.8, p and q
are symmetric to both C and L.

Now, suppose C1 and C2 are circles that do not intersect. We may first perform
an inversion in a circle C that maps C1 to a line C∗1 , and C2 to another circle,
C∗2 , as suggested in Figure 3.2.17 (any circle C centered on a point of C1 works).
Then by reason of the preceeding argument, there exist two points p and q that
are symmetric with respect to C∗1 and C∗2 . Since inversion preserves symmetry
points, iC(p) and iC(q) are symmetric with respect to both iC(C∗1 ) and iC(C∗2 ).
But iC(C∗1 ) = C1 and iC(C∗2 ) = C2 so we’re found two points symmetric to both
C1 and C2. (In fact, we have one exception. If C1 and C2 are concentric circles,
this strategy will produce points iC(p) and iC(q), one of which is the center of C,
and we have not yet extended the notion of inversion to include the center. We do
so in the next section in such a way that the theorem applies to this exceptional
case as well.)

C2
C∗2

C

C1

C∗1

Figure 3.2.17 By inversion we may transform two circles to a circle and a line.
�

Exercises
1. Prove the general formula for inversion in a circle C centered at z0 with radius

r. In particular, show in this case that

iC(z) = r2

(z − z0) + z0.

2. Constructing the symmetric point to z when z is inside the circle of inversion.
Prove that for a point z inside the circle C with center z0 (Figure 3.2.18(a)),

the following construction finds the symmetry point of z. (1) Draw the ray
from z0 through z. (2) Construct the perpendicular to this ray at z. Let t be
a point of intersection of this perpendicular and C. (3) Construct the radius
z0t. (4) Construct the perpendicular to this radius at t. The symmetric point
z∗ is the point of intersection of this perpendicular and ray −→zoz.



48 CHAPTER 3. TRANSFORMATIONS

(1) (4)

(2)

C

(3)

t

z0

z

z∗

(a)

C

z0

z

(1)
t

(2)

z∗

(b)

Figure 3.2.18 Constructing the symmetric point (a) if z is inside the circle of
inversion; (b) if z is outside the circle of inversion.

3. Constructing the symmetric point to z when z is outside the circle of inversion.
Prove that for a point z outside the circle C with center z0 (Figure 3.2.18(b)),

the following construction finds the symmetry point of z. (1) Construct the
circle having diameter z0z. Let t be a point of intersection of the two circles.
(2) Construct the perpendicular to z0z through t. Let z∗ be the intersection
of this perpendicular with segment z0z.

4. Suppose T1 is inversion in the circle |z| = r1, and T2 is inversion in the circle
|z| = r2, where r1, r2 > 0. Prove that T2 ◦ T1 is a dilation. Conversely, show
any dilation is the composition of two inversions.

5. Determine the image of the line y = mx + b (when b 6= 0) under inversion
in the unit circle. In particular, show that the image is a circle with center
(−m/2b, 1/2b) and radius

√
(m2 + 1)/4b2.

6. Determine the image of the line L given by y = 3x+ 4 under inversion in the
unit circle. Give a careful plot of the unit circle, the line L, and the image of
L under the inversion.

7. Prove that inversion in the unit circle maps the circle (x− a)2 + (y− b)2 = r2

to the circle (
x− a

d

)2
+
(
y − b

d

)2
=
(
r

d

)2

where d = a2 + b2 − r2, provided that d 6= 0.

8. Determine in standard form the image of the circle C given by (x−1)2 +y2 = 4
under inversion in the unit circle. Give a careful plot of the unit circle, the
circle C, and the image of C under the inversion.

9. True or False? If a circle C gets mapped to another circle under inversion
in the unit circle, then the center of C gets mapped to the center of the
image circle, iS1(C). If the statement is true, prove it; if it is false, provide a
counterexample.

10. Suppose C and D are orthogonal circles. Corollary 3.2.9 tells us that inversion
in C maps D to itself. Prove that this inversion also takes the interior of D
to itself.
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11. Finish the proof of Theorem 3.2.10 by showing that the angle of intersection
at z∗ equals the angle of intersection at z in Figure 3.2.11.

12. Suppose C is the circle |z − z0| = r and C ′ is the circle |z − z0| = r′. Find
the stretch factor k in the dilation S(z) = k(z − z0) + z0 so that iC = S ◦ iC′ .

13. Complete the proof of Lemma 3.2.7 by proving the case in which the line
through p passes through the center of C.

3.3 The Extended Plane
Consider again inversion about the circle C given by |z − z0| = r, and observe
that points close to z0 get mapped to points in the plane far away from from z0.
In fact, a sequence of points in C whose limit is z0 will be inverted to a sequence
of points whose magnitudes go to ∞. Conversely, any sequence of points in C
having magnitudes marching off to ∞ will be inverted to a sequence of points
whose limit is z0.

With this in mind, we define a new point called the point at infinity, denoted
∞. Adjoin this new point to the plane to get the extended plane, denoted as
C+. Then, one may extend inversion in the circle C to include the points z0 and
∞. In particular, inversion of C+ in the circle C centered at z0 with radius r,
iC : C+ → C+, is given by

iC(z) =


r2

(z−z0) + z0 if z 6= z0,∞;

∞ if z = z0;
z0 if z =∞

.

Viewing inversion as a transformation of the extended plane, we define z0 and
∞ to be symmetric points with respect to the circle of inversion.

The space C+ will be the canvas on which we do all of our geometry, and
it is important to begin to think of ∞ as “one of the gang,” just another point
to consider. All of our translations, dilations, and rotations can be redefined to
include the point ∞.

So where is ∞ in C+? You approach ∞ as you proceed in either direction
along any line in the complex plane. More generally, if {zn} is a sequence of
complex numbers such that |zn| → ∞ as n→∞, then we say lim

n→∞
zn =∞. By

convention, we assume ∞ is on every line in the extended plane, and reflection
across any line fixes ∞.

Theorem 3.3.1 Any general linear transformation extended to the domain C+

fixes ∞.

Proof. If T (z) = az + b where a and b are complex constants with a 6= 0,
then by limit methods from calculus, as |zn| → ∞, |azn + b| → ∞ as well. Thus,
T (∞) =∞. �

So, with new domain C+, we modify our fixed point count for the basic
transformations:

• The translation Tb of C+ fixes one point (∞).
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• The rotation about the origin Rθ of C+ fixes 2 points (0 and ∞).

• The dilation T (z) = kz of C+ fixes 2 points, (0 and ∞).

• The reflection rL(z) of C+ about line L fixes all points on L (which now
includes ∞).

Example 3.3.2 Some transformations not fixing ∞.

The following function is a transformation of C+

T (z) = i+ 1
z + 2i ,

a fact we prove in the next section. For now, we ask where T sends ∞,
and which point gets sent to ∞.

We tackle the second question first. The input that gets sent to ∞ is
the complex number that makes the denominator 0. Thus, T (−2i) =∞.

To answer the first question, take your favorite sequence that marches
off to ∞, for example, 1, 2, 3, . . .. The image of this sequence, T (1), T (2),
T (3), . . . consists of complex fractions in which the numerator is constant,
but the denominator grows unbounded in magnitude along the horizontal
line Im(z) = 2. Thus, the quotient tends to 0, and T (∞) = 0.

As a second example, you can check that if

T (z) = iz + (3i+ 1)
2iz + 1 ,

then T (i/2) =∞ and T (∞) = 1/2.

We emphasize that the following key results of the previous section extend to C+

as well:

• There exists a unique cline through any three distinct points in C+. (If
one of the given points in Theorem 3.2.4 is ∞, the unique cline is the line
through the other two points.)

• Theorem 3.2.8 applies to all points z not on C, including z = z0 or ∞.

• Inversion about a cline preserves angle magnitudes at all points in C+ (we
discuss this below).

• Inversion preserves symmetry points for all points in C+ (Theorem 3.2.12
holds if p or q is ∞).

• Theorem 3.2.16 now holds for all clines that do not intersect, including
concentric circles. If the circles are concentric, the points symmetric to both
of them are ∞ and the common center.

Stereographic Projection. We close this section with a look at stereographic
projection. By identifying the extended plane with a sphere, this map offers a
very useful way for us to think about the point ∞.
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Definition 3.3.3 The unit 2-sphere, denoted S2, consists of all the points in
3-space that are one unit from the origin. That is,

S2 = {(a, b, c) ∈ R3 | a2 + b2 + c2 = 1}.

♦
We will usually refer to the unit 2-sphere as simply “the sphere.” Stereographic

projection of the sphere onto the extended plane is defined as follows. Let
N = (0, 0, 1) denote the north pole on the sphere. For any point P 6= N on
the sphere, φ(P ) is the point on the ray −−→NP that lives in the xy-plane. See
Figure 3.3.4 for the image of a typical point P of the sphere.

x

y

z

N

P = (a, b, c)

φ(P )

Figure 3.3.4 Stereographic projection.
The stereographic projection map φ can be described algebraically. The line

through N = (0, 0, 1) and P = (a, b, c) has directional vector −−→NP = 〈a, b, c− 1〉,
so the line equation can be expressed as

~r(t) = 〈0, 0, 1〉+ t〈a, b, c− 1〉.

This line intersects the xy-plane when its z coordinate is zero. This occurs
when t = 1

1−c , which corresponds to the point ( a
1−c ,

b
1−c , 0).

Thus, for a point (a, b, c) on the sphere with c 6= 1, stereographic projection
φ : S2 → C+ is given by

φ((a, b, c)) = a

1− c + b

1− c i.

Where does φ send the north pole? To ∞, of course. A sequence of points on
S2 that approaches N will have image points in C with magnitudes that approach
∞.

Angles at ∞. If we think of ∞ as just another point in C+, it makes sense to
ask about angles at this point. For instance, any two lines intersect at ∞, and
it makes sense to ask about the angle of intersection at ∞. We can be guided
in answering this question by stereographic projection, thanks to the following
theorem.
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Theorem 3.3.5 Stereographic projection preserves angles. That is, if two curves
on the surface of the sphere intersect at angle θ, then their image curves in C+

also intersect at angle θ.
Thus, if two curves in C+ intersect at∞ we may define the angle at which they

intersect to equal the angle at which their pre-image curves under stereographic
projection intersect. The angle at which two parallel lines intersect at ∞ is 0.
Furthermore, if two lines intersect at a finite point p as well as at ∞, the angle at
which they intersect at ∞ equals the negative of the angle at which they intersect
at p. As a consequence, we may say that inversion about a circle preserves angle
magnitudes at all points in C+.

Exercises
1. In each case find T (∞) and the input z0 such that T (z0) =∞.

a. T (z) = (3− z)/(2z + i).

b. T (z) = (z + 1)/eiπ/4.

c. T (z) = (az + b)/(cz + d).

2. Suppose D is a circle of Apollonius of p and q. Prove that p and q are
symmetric with respect to D.

3. Determine the inverse stereographic projection function φ−1 : C+ → S2. In
particular, show that for z = x+ yi 6=∞,

φ−1(x, y) =
(

2x
x2 + y2 + 1 ,

2y
x2 + y2 + 1 ,

x2 + y2 − 1
x2 + y2 + 1

)
.

3.4 Möbius Transformations

Consider the function defined on C+ by T (z) = (az+ b)/(cz+ d) where a, b, c and
d are complex constants. Such a function is called a Möbius transformation
if ad − bc 6= 0. Transformations of this form are also called fractional linear
transformations. The complex number ad − bc is called the determinant of
T (z) = (az + b)/(cz + d), and is denoted as Det(T ).

Theorem 3.4.1 The function

T (z) = az + b

cz + d

is a transformation of C+ if and only if ad− bc 6= 0.

Proof. First, suppose T (z) = (az + b)/(cz + d) and ad − bc 6= 0. We must
show that T is a transformation. To show T is one-to-one, assume T (z1) = T (z2).
Then

az1 + b

cz1 + d
= az2 + b

cz2 + d
.

Cross multiply this expression and simplify to obtain

(ad− bc)z1 = (ad− bc)z2.
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Since ad− bc 6= 0 we may divide this term out of the expression to see z1 = z2, so
T is 1-1 and it remains to show that T is onto.

Suppose w in C+ is given. We must find z ∈ C+ such that T (z) = w. If
w = ∞, then z = −d/c (which is ∞ if c = 0) does the trick, so assume w 6= ∞.
To find z such that T (z) = w we solve the equation

az + b

cz + d
= w

for z, which is possible so long as a and c are not both 0 (causing the z terms to
vanish). Since ad− bc 6= 0, we can be assured that this is the case, and solving
for z we obtain

z = −dw + b

cw − a
.

Thus T is onto, and T is a transformation.
To prove the converse we show the contrapositive. We suppose ad − bc = 0

and show T (z) = (az + b)/(cz + d) is not a transformation by tackling two cases.
Case 1 : ad = 0. In this case, bc = 0 as well, so a or d is zero, and b or c is zero.

In all four scenarios, one can check immediately that T is not a transformation of
C+. For instance, if a = c = 0 then T (z) = b/d is neither 1-1 nor onto C+.

Case 2 : ad 6= 0. In this case, all four constants are non-zero, and a/c = b/d.
Since T (0) = b/d and T (∞) = a/c, T is not 1-1, and hence not a transformation
of C+. �

Note that in the preceeding proof we found the inverse transformation of a
Möbius transformation. This inverse transformation is itself a Möbius transforma-
tion since its determinant is not 0. In fact, its determinant equals the determinant
of the original Möbius transformation. We summarize this fact as follows.

Theorem 3.4.2 The Möbius transformation

T (z) = az + b

cz + d

has the inverse transformation

T−1(z) = −dz + b

cz − a
.

In particular, the inverse of a Möbius transformation is itself a Möbius transfor-
mation.

If we compose two Möbius transformations, the result is another Möbius
transformation. Proof of this fact is left as an exercise.
Theorem 3.4.3 The composition of two Möbius transformations is again a Möbius
transformation.

Just as translations and rotations of the plane can be constructed from
reflections across lines, the general Möbius transformation can be constructed
from inversions about clines.
Theorem 3.4.4 A transformation of C+ is a Möbius transformation if and only
if it is the composition of an even number of inversions.

Proof. We first observe that any general linear transformation T (z) = az + b
is the composition of an even number of inversions. Indeed, such a map is a
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dilation and rotation followed by a translation. Rotations and translations are each
compositions of two reflections (Theorem 3.1.17), and a dilation is the composition
of two inversions about concentric circles (Exericise 3.2.4). So, in total, we have
that T (z) = az + b is the composition of an even number of inversions.

Now suppose T is the Möbius transformation T (z) = (az + b)/(cz + d). If
c = 0 then T is a general linear transformation of the form T (z) = a

dz + b
d , and

we have nothing to show.
So we assume c 6= 0. By doing some long division, the Möbius transformation

can be rewritten as

T (z) = az + b

cz + d
= a

c
+ (bc− ad)/c

cz + d
,

which can be viewed as the composition T3 ◦ T2 ◦ T1(z), where T1(z) = cz + d,
T2(z) = 1/z and T3(z) = bc−ad

c z + a
c . Note that T1 and T3 are general linear

transformations, and

T2(z) = 1
z

=
[

1
z

]
is inversion in the unit circle followed by reflection about the real axis. Thus, each
Ti is the composition of an even number of inversions, and the general Möbius
transformation T is as well.

To prove the other direction, we show that if T is the composition of two
inversions then it is a Möbius transformation. Then, if T is the composition of
any even number of inversions, it is the composition of half as many Möbius
transformations and is itself a Möbius transformation by Theorem 3.4.3.

Case 1 : T is the composition of two circle inversions. Suppose T = iC1 ◦ iC2

where C1 is the circle |z − z1| = r1 and C2 is the circle |z − z2| = r2. For i = 1, 2
the inversion may be described by

iCi = r2
i

z − zi
+ zi,

and if we compose these two inversions we do in fact obtain a Möbius transforma-
tion. We leave the details of this computation to the reader but note that the
determinant of the resulting Möbius transformation is r2

1r
2
2.

Case 2 : T is the composition of one circle inversion and one line reflection.
Reflection in the line can be given by rL(z) = eiθz + b and inversion in the
circle C is given by iC = r2

z−zo
+ zo where z0 and r are the center and radius

of the circle, as usual. Work out the composition and you’ll see that we have a
Möbius transformation with determinant eiθr2 (which is non-zero). Its inverse,
the composition iC ◦ rL, is also a Möbius transformation.

Case 3 : T is the composition of two reflections. Either the two lines of reflection
are parallel, in which case the composition gives a translation, or they intersect,
in which case we have a rotation about the point of intersection (Theorem 3.1.17).
In either case we have a Möbius transformation.

It follows that the composition of any even number of inversions yields a
Möbius transformation. �

Since Möbius transformations are composed of inversions, they will embrace
the finer qualities of inversions. For instance, since inversion preserves clines,
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so do Möbius transformations, and since inversion preserves angle magnitudes,
Möbius transformations preserve angles (as an even number of inversions).

Theorem 3.4.5 Möbius transformations take clines to clines and preserves angles.
The following fixed point theorem is useful for understanding Möbius transfor-

mations.
Theorem 3.4.6 Any Möbius transformation T : C+ → C+ fixes 1, 2, or all
points of C+.

Proof. To find fixed points of T (z) = (az + b)/(cz + d) we want to solve

az + b

cz + d
= z

for z, which gives the quadratic equation

cz2 + (d− a)z − b = 0. (1)

If c 6= 0 then, as discussed in Example 2.4.3, equation (1) must have 1 or 2
solutions, and there are 1 or 2 fixed points in this case.

If c = 0 and a 6= d, then the transformation has the form T (z) = (az + b)/d,
which fixes ∞. From equation (1), z = b/(d− a) 6=∞ is a fixed point as well. So
we have 2 fixed points in this case.

If c = 0 and a = d, then equation (1) reduces to 0 = −b, so b = 0 too, and the
transformation is the identity transformation T (z) = (az + 0)/(0z + a) = z. This
transformation fixes every point. �

With this fixed point theorem in hand, we can now prove the Fundamental
Theorem of Möbius Transformations, which says that if we want to induce a
one-to-one and onto motion of the entire extended plane that sends my favorite
three points (z1, z2, z3) to your favorite three points (w1, w2, w3), as dramatized
below, then there is a Möbius transformation that will do the trick, and there’s
only one.

z1

z2

z3

w1 w2

w3

Figure 3.4.7We can build a Möbius transformation that sends z1 7→ w1, z2 7→ w2,
and z3 7→ w3.

Theorem 3.4.8 Fundamental Theorem of Möbius Transformations.
There is a unique Möbius transformation taking any three distinct points of
C+ to any three distinct points of C+.

Proof. Suppose z1, z2, and z3 are distinct points in C+, and w1, w2, and w3
are distinct points in C+. We show there exists a unique Möbius transformation
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that maps zi 7→ wi for i = 1, 2, 3. To start, we show there exists a map, built
from inversions, that maps z1 7→ 1, z2 7→ 0 and z3 7→ ∞. We do so in the case
that z3 6=∞. This special case is left to the exercises.

First, invert about any circle centered at z3. This takes z3 to ∞ as desired.
Points z1 and z2 no doubt get moved, say to z′1 and z′2, respectively, neither of
which is ∞. Second, do a translation that takes z′2 to 0. Such a translation will
keep∞ fixed, and take z′1 to some new spot z′′1 in C. Third, rotate and dilate about
the origin, (which keeps 0 and ∞ fixed) so that z′′1 moves to 1. This process yields
a composition of inversions that maps z1 7→ 1, z2 7→ 0, and z3 7→ ∞. However, this
composition actually involves an odd number of inversions, so it’s not a Möbius
transformation. To make a Möbius transformation out of this composition, we
do one last inversion: reflect across the real axis. This keeps 1, 0, and ∞ fixed.
Thus, there is a Möbius transformation taking any three distinct points to the
points 1, 0, and ∞. For now, we let T denote the Möbius transformation that
maps z1 7→ 1, z2 7→ 0 and z3 7→ ∞.

One can similarly construct a Möbius transformation, call it S, that takes
w1 7→ 1, w2 7→ 0, and w3 7→ ∞.

If we let S−1 denote the inverse transformation of S, then the composition
S−1 ◦ T is a Möbius transformation, and this transformation does what we set
out to accomplish as suggested by Figure 3.4.9. In particular,

S−1 ◦ T (z1) = S−1(1) = w1

S−1 ◦ T (z2) = S−1(0) = w2

S−1 ◦ T (z3) = S−1(∞) = w3.

z1

z2

z3

w1

w2

w3

1
0
∞

T S

S−1 ◦ T

Figure 3.4.9 A schematic for building a Möbius transformation that sends
zi 7→ wi for i = 1, 2, 3. Go through the points 1, 0,∞.

Finally, to prove that this Möbius transformation is unique, assume that there
are two Möbius transformations U and V that map z1 7→ w1, z2 7→ w2 and
z3 7→ w3. Then V −1 ◦ U is a Möbius transformation that fixes z1, z2, and z3.
According to Theorem 3.4.6 there is only one Möbius transformation that fixes
more than two points, and this is the identity transformation. Thus V −1◦U(z) = z
for all z ∈ C+. Similarly, U ◦ V −1(z) = z, and it follows that U(z) = V (z) for all
z ∈ C+. That is, U and V are the same map. �
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There is an algebraic description of the very useful Möbius transformation
mapping z1 7→ 1, z2 7→ 0 and z3 7→ ∞ that arose in the proof of Theorem 3.4.8:

T (z) = (z − z2)
(z − z3) ·

(z1 − z3)
(z1 − z2) .

The reader can check that the map works as advertised and that it is indeed a
Möbius transformation. (While it is clear that the transformation has the form
(az+ b)/(cz+d), it might not be clear that the determinant is nonzero. It is, since
the zi are distinct.) We also note that if one of the zi is ∞, the form of the map
reduces by cancellation of the terms with ∞ in them. For instance, if z2 = ∞,
the map that sends z1 7→ 1, ∞ 7→ 0 and z3 7→ ∞ is T (z) = (z1 − z3)/(z − z3).

The Möbius transformation that sends any three distinct points to 1, 0, and
∞ is so useful that it gets its own name and special notation.

Definition 3.4.10 The cross ratio of 4 complex numbers z, w, u, and v, where
w, u, and v are distinct, is denoted (z, w;u, v), and

(z, w;u, v) = z − u
z − v

· w − v
w − u

.

♦
If z is a variable, and w, u, and v are distinct complex constants, then T (z) =

(z, w;u, v) is the (unique!) Möbius transformation that sends w 7→ 1, u 7→ 0, and
v 7→ ∞.

Example 3.4.11 Building a Möbius transformation.

Find the unique Möbius transformation that sends 1 7→ 3, i 7→ 0, and
2 7→ −1.

One approach: Find T (z) = (z, 1; i, 2) and S(w) = (w, 3; 0,−1). In this
case, the transformation we want is S−1 ◦ T .

To find this transformation, we set the cross ratios equal:

(z, 1; i, 2) = (w, 3; 0,−1)
z − i
z − 2 ·

1− 2
1− i = w − 0

w + 1 ·
3 + 1
3− 0

−z + i

(1− i)z − 2 + 2i = 4w
3w + 3 .

Then solve for w:

−3zw + 3iw + 3i− 3z = 4[(1− i)z − 2 + 2i]w
−3z + 3i = [3z − 3i+ 4[(1− i)z − 2 + 2i]]w

w = −3z + 3i
(7− 4i)z + (−8 + 5i) .

Thus, our Möbius transformation is

V (z) = −3z + 3i
(7− 4i)z + (−8 + 5i) .

It’s quite easy to check our answer here. Since there is exactly one
Möbius transformation that does the trick, all we need to do is check
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whether V (1) = 3, V (i) = 0 and V (2) = −1. Ok... yes... yes... yep! We’ve
got our map!

Theorem 3.4.12 Invariance of Cross Ratio. Suppose z0, z1, z2, and z3 are
four distinct points in C+, and T is any Möbius transformation. Then

(z0, z1; z2, z3) = (T (z0), T (z1);T (z2), T (z3)).

Proof. Let T be an arbitrary Möbius transformation, and define S(z) =
(z, z1; z2, z3), which sends z1 7→ 1, z2 7→ 0, and z3 7→ ∞. Notice, the composition
S ◦ T−1 is a Möbius transformation that sends T (z1) 7→ 1, T (z2) 7→ 0, and
T (z3) 7→ ∞. So this map can be expressed as a cross ratio:

S ◦ T−1(z) = (z, T (z1);T (z2), T (z3)).

Plugging T (z0) into this transformation, we see

S ◦ T−1(T (z0)) = (T (z0), T (z1);T (z2), T (z3)).

On the other hand, S ◦ T−1(T (z0)) = S(z0), which equals (z0, z1; z2, z3). So
we have proved that

(z0, z1; z2, z3) = (T (z0), T (z1);T (z2), T (z3)).

�

Example 3.4.13 Do four points lie on a single cline?

In addition to defining maps that send points to 1, 0, and ∞, the cross
ratio can proclaim whether four points lie on the same cline: If (z, w;u, v)
is a real number then the points are all on the same cline; if (z, w;u, v) is
complex, then they aren’t. The proof of this fact is left as an exercise.

Take the points 1, i,−1,−i. We know these four points lie on the circle
|z| = 1, so according to the statement above, (1, i;−1,−i) is a real number.
Let’s check:

(1, i;−1,−i) = 1 + 1
1 + i

· i+ i

i+ 1

= 2
1 + i

2i
1 + i

= 4i
(1− 1) + 2i

= 4i
2i

= 2. (Yep!)

Another important feature of inversion that gets passed on to Möbius transfor-
mations is the preservation of symmetry points. The following result is a corollary
to Theorem 3.2.12.
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Corollary 3.4.14 If z and z∗ are symmetric with respect to the cline C, and T
is any Möbius transformation, then T (z) and T (z∗) are symmetric with respect to
the cline T (C).

We close the section with one more theorem about Möbius transformations.
Theorem 3.4.15 Given any two clines C1 and C2, there exists a Möbius trans-
formation T that maps C1 onto C2. That is, T (C1) = C2.

Proof. Let p1 be a point on C1 and q1 and q∗1 symmetric with respect to C1.
Similarly, let p2 be a point on C2 and q2 and q∗2 be symmetric with respect to C2.
Build the Möbius transformation that sends p1 7→ p2, q1 7→ q2 and q∗1 7→ q∗2 . Then
T (C1) = C2. �

Exercises

1. Find a transformation of C+ that rotates points about 2i by an angle π/4.
Show that this transformation has the form of a Möbius transformation.

2. Find the inverse transformation of T (z) = 3z+i
2z+1 .

3. Prove Theorem 3.4.3. That is, suppose T and S are two Möbius transforma-
tions and prove that the composition T ◦ S is again a Möbius transformation.

4. Prove that any Möbius transformation can be written in a form with determi-
nant 1, and that this form is unique up to sign.

5. Find the unique Möbius transformation that sends 1 7→ i, i 7→ −1, and
−1 7→ −i. What are the fixed points of this transformation? What is T (0)?
What is T (∞)?

6. Repeat the previous exercise, but send 2→ 0, 1→ 3 and 4→ 4.

7. Prove this feature of the cross ratio: (z, z1; z2, z3) = (z, z1; z2, z3).

8. Prove that the cross ratio of four distinct real numbers is a real number.
9. Prove that the cross ratio of four distinct complex numbers is a real number

if and only if the four points lie on the same cline.

10. Do the points 2 + i, 3, 5, and 6 + i lie on a single cline?

11. More on Möbius transformations.
a. Give an example of a Möbius transformation T such that T (z) 6= T (z)

for some z in C+.

b. Suppose T is a Möbius transformation that sends the real axis onto
itself. Prove that in this case, T (z) = T (z) for all z in C.

12. Is there a Möbius transformation that sends 1 to 3, i to 4, -1 to 2 + i and −i
to 4 + i?

13. Find the fixed points of these transformations on C+. Remember that ∞ can
be a fixed point of such a transformation.

a. T (z) = 2z
3z − 1

b. T (z) = iz
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c. T (z) = −iz
(1− i)z − 1

14. Find a Möbius transformation that takes the circle |z| = 4 to the straight line
3x+ y = 4.

15. Find a non-trivial Möbius transformation that fixes the points -1 and 1, and
call this transformation T . Then, let C be the imaginary axis. What is the
image of C under this map. That is, what cline is T (C)?

16. Suppose z1, z2, z3 are distinct points in C+. Show that by an even number of
inversions we can map z1 7→ 1, z2 7→ 0, and z3 7→ ∞ in the case that z3 =∞.

3.5 Möbius Transformations: A Closer Look
To visualize Möbius transformations it is helpful to focus on fixed points and, in
the case of two fixed points, on two families of clines with respect to these points.

Given two points p and q in C+, a type I cline of p and q is a cline that
goes through p and q, and a type II cline of p and q is a cline with respect to
which p and q are symmetric. Type II clines are also called circles of Apollonius
(see Exercise 3.3.2). Figure 3.5.1 shows some type I and type II clines of p and q.
The type II clines of p and q are dashed.

p q

Figure 3.5.1 Type I clines (solid) and Type II clines (dashed) of p and q.

By Theorem 3.2.8, any type II cline of p and q intersects any type I cline of
p and q at right angles. Furthermore, because Möbius transformations preserve
clines and symmetry points, we can be assured that Möbius transformations
preserve type I clines as well as type II clines. In particular, if C is a type I cline
of p and q, then T (C) is a type I cline of T (p) and T (q). Similarly, if C is a type
II cline of p and q, then T (C) is a type II cline of T (p) and T (q). We can use this
to our advantage.

For instance, the type I clines of the points 0 and ∞ are, precisely, lines
through the origin, while the type II clines of 0 and ∞ are circles centered at
the origin. (Remember, inversion in a circle takes the center of the circle to ∞.)
The type I clines in this case are clearly perpendicular to the type II clines, and
they combine to create a coordinate system of the plane (polar coordinates), as
pictured in Figure 3.5.2(a).
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(a) (b)

p q

Figure 3.5.2 (a) Type I clines (solid) and type II clines (dashed) of points 0 and
∞ (solid); (b) A Möbius transformation sending 0 7→ p and ∞ 7→ q sends type I
and II clines of 0 and ∞ to type I and II clines of p and q, respectively.

We can move this system of clines by considering a Möbius transformation
that maps 0 to p and ∞ to q (where p, q 6= ∞). Lines through the origin get
mapped to type I clines of p and q, and circles centered at the origin get mapped
to type II clines of p and q. The result is a system of clines that serves as a general
coordinate system for the plane. Each point z in the plane is at the intersection
of a single type I cline of p and q and a single type II cline of p and q, and these
two clines intersect at right angles.

Let’s get back to fixed points and how they can help us describe Möbius
transformations. We consider the case that 0 and ∞ are fixed before proceeding
to the general case.

Example 3.5.3 Fixing 0 and ∞.

Suppose T (z) = (az + b)/(cz + d) is a Möbius transformation that fixes
0 and ∞. In this case, the form of the Möbius transformation can be
simplified. In particular, since T (0) = 0, it follows that b = 0. And since
T (∞) =∞, it follows that c = 0. Thus, T (z) = a

dz which may be written
as

T (z) = reiθz.

With T in this form, it is clear that if T fixes 0 and ∞, then T is a
combination of a dilation (by factor r) and a rotation about the origin (by
a factor θ). We may assume that r > 0 in the above equation, because if
it is negative, we can turn it into a positive constant by adding π to the
angle of rotation.

A dilation by r will push points along lines through the origin. These
lines are precisely the type I clines of 0 and ∞. All points in the plane
either head toward ∞ (if r > 1) or they all head toward 0 (if 0 < r < 1).
Of course, if r = 1 there is no dilation.

Meanwhile, rotation about 0 by θ pushes points along circles centered
at the origin. These circles are precisely the type II clines of 0 and ∞.
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Now suppose T is a Möbius transformation that fixes two finite points p and
q (neither is ∞). Let

S(z) = z − p
z − q

be a Möbius transformation that takes p to 0 and q to ∞. Let U be the Möbius
transformation determined by the composition equation

U = S ◦ T ◦ S−1. (1)

Notice
U(0) = S ◦ T ◦ S−1(0) = S ◦ T (p) = S(p) = 0,

and
U(∞) = S ◦ T ◦ S−1(∞) = S ◦ T (q) = S(q) =∞.

That is, U is a Möbius transformation that fixes 0 and∞. So, by Example 3.5.3,
U is a rotation, a dilation, or some combination of those, and U looks like
U(z) = reiθz.

In any event, focusing on T again and using equation (1), which can be
rewritten as S ◦ T = U ◦ S, we arrive at the following equation, called the normal
form of the Möbius transformation in this case.

Normal form, two fixed points.

The normal form of a Möbius transformation T fixing distinct points p and
q (neither of which is ∞):

T (z)− p
T (z)− q = reiθ · z − p

z − q

This normal form is much more illuminating than the standard a, b, c, d form
because, although the map is still described in terms of four constants (p, q, r, θ),
each constant now has a simple geometric interpretation: p and q are fixed points,
r is a dilation factor along type I clines of p and q, and θ is a rotation factor
around type II clines of p and q.

In particular, thanks to composition equation (1) we can view T as the
composition T = S−1 ◦ U ◦ S. With this view, T moves points according to a
three-leg journey. Think of a general point z clinging to the intersection of a single
type II cline of p and q and a single type I cline of p and q (see Figure 3.5.4).

z
p q

T (z)
S

S−1

U(S(z))

S(z)

Figure 3.5.4 Tracking the image of z if T fixes p and q.
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First, z gets sent via S to S(z), which is at the intersection of a line through
the origin and a circle centered at the origin. Second, U (which has the form
U(z) = reiθz), sends S(z) along this line through the origin (by dilation factor
r), and then around a new circle centered at the origin (by rotation factor θ) to
the point U(S(z)). Third, S−1 sends U(S(z)) back to the intersection of a type
I cline of p and q and a type II cline of p and q. This point of intersection is
S−1(U(S(z))) and is equivalent to T (z).

Though fatigued, our well-traveled point realizes there’s a shortcut. Why go
through this complicated wash? We can understand T as follows: T will push
points along type I clines of p and q (according to the dilation factor r) and along
type II clines of p and q (according to the rotation factor θ).

We emphasize two special cases of this normal form. If |reiθ| = 1 there is
no dilation, and points simply get rotated about type II clines of p and q as
in Figure 3.5.5. Such a Möbius transformation is called an elliptic Möbius
transformation.

p
q

Figure 3.5.5 An elliptic Möbius transformation fixing p and q swirls points
around type II clines of p and q.

The second special case occurs when θ = 0. Here we have a dilation factor r,
but no rotation. All points move along type I clines of p and q, as in Figure 3.5.6.
A Möbius transformation of this variety is called a hyperbolic Möbius trans-
formation. A hyperbolic Möbius transformation fixing p and q either sends all
points away from p and toward q or vice versa, depending on the value of r.

p
q

Figure 3.5.6 A hyperbolic Möbius transformation fixing p and q pushes points
away from one fixed point and toward the other along type I clines of p and q.

If we are not in one of these special cases, then T is simply a combination of
these two, and a Möbius transformation of this type is often called loxodromic.



64 CHAPTER 3. TRANSFORMATIONS

If a Möbius transformation fixes two finite points, say p and q, and it is not
the identity transformation, then some finite point gets sent to ∞. Moreover, ∞
gets sent to some finite point. The point sent to infinity is called the pole of the
transformation and is often denoted z∞. That is, T (z∞) =∞. The inverse pole
of T is the image of ∞ under the map, which is often denoted as w∞. That is,
T (∞) = w∞. There is a simple relationship between the four points p, q, z∞, and
w∞.
Lemma 3.5.7 Suppose T is a Möbius transformation that fixes distinct finite
points p and q, sends z∞ to ∞, and sends ∞ to w∞. Then p+ q = z∞ + w∞.

Proof. Suppose T satisfies the conditions of the lemma. Then T has normal
form

z − p
z − q

= λ
T (z)− p
T (z)− q ,

where λ = reiθ. Plug z = z∞ into the normal form to see

z∞ − p
z∞ − q

= λ · 1.

Plug z =∞ into the normal form to see

1 = λ
w∞ − p
w∞ − q

.

Next solve each equation for λ, set them equal, cross multiply, and simplify as
follows to get the result:

z∞ − p
z∞ − q

= w∞ − q
w∞ − p

(z∞ − p)(w∞ − p) = (w∞ − q)(z∞ − q)
p2 − pw∞ − pz∞ = q2 − qw∞ − qz∞

p2 − q2 = p(z∞ + w∞)− q(z∞ + w∞)
(p− q)(p+ q) = (p− q)(z∞ + w∞)

p+ q = z∞ + w∞ (since p 6= q).

This completes the proof. �

Theorem 3.5.8 If T is a Möbius transformation that fixes two distinct, finite
points p and q, sends z∞ to ∞, and sends ∞ to w∞, then

T (z) = w∞z − pq
z − z∞

.

Proof. In the proof of Lemma 3.5.7, we found that the constant λ in the
normal form of T is

λ = z∞ − p
z∞ − q

.

It follows that T has the normal form

z − p
z − q

=
(
z∞ − p
z∞ − q

)
· T (z)− p
T (z)− q .
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Solve this expression for T (z) and reduce it using the fact that p+q = z∞+w∞
to get the expression for T that appears in the statement of the theorem. The
details are left to the reader. �

Example 3.5.9 Fix -1 and 1 and send i 7→ ∞.

By Lemma 3.5.7, the Möbius transformation sends ∞ to −i, so by Theo-
rem 3.5.8,

T (z) = −iz − (1)(−1)
z − i

= −iz + 1
z − i

.

Example 3.5.10 Analyze a Möbius transformation.

Consider the Möbius transformation

T (z) = (6 + 3i)z + (2− 3i)
z + 3 .

First we find the fixed points and the normal form of T . To find the
fixed points we solve T (z) = z for z.

(6 + 3i)z + (2− 3i)
z + 3 = z

(6 + 3i)z + (2− 3i) = z2 + 3z
z2 − (3 + 3i)z − (2− 3i) = 0.

Hey! Wait a moment! This looks familiar. Let’s see . . . yes! We showed
in Example 2.4.4 that this quadratic equation has solutions z = i and
z = 3 + 2i.

So the map has these two fixed points, and the normal form of T is

T (z)− i
T (z)− (3 + 2i) = λ

z − i
z − (3 + 2i) .

To find the value of λ, plug into the normal form a convenient value of
z. For instance, T (−3) =∞, so

1 = λ
−3− i

−3− (3 + 2i) .

It follows that λ = 2, so T is a hyperbolic map that pushes points
along clines through i and 3 + 2i. Below is a schematic for how the
map pushes points around in C+. Notice T (0) = 2

3 − i, T (1) = 2, and
T (4i) = 2.16 + 4.12i. Points are moving along type I clines of i and 3 + 2i
away from i and toward 3 + 2i.

From the original description of T we observe that the pole of the map
is z∞ = −3, and the inverse pole of the map is w∞ = 6 + 3i. Notice
that z∞, w∞, and the two fixed points all lie on the same Euclidean
line. This will always be the case for a hyperbolic Möbius transformation
(Exercise 3.5.9).
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i

3 + 2i

0

T (0)

1 T (1)

4i T (4i)

z∞

w∞

Example 3.5.11 Fix i and 0 and send 1 7→ 2.

The normal form of this map is

T (z)− i
T (z)− 0 = λ

z − i
z − 0 .

Since T (1) = 2 we know that

2− i
2 = λ(1− i).

Solving for λ we have
λ = 3

4 + 1
4 i,

and the map is loxodromic.
Expressing λ in polar form, λ = reiθ, gives r =

√
10
4 and θ =

arctan(1/3). So T pushes points along type I clines of i and 0 according
to the scale factor r and along type II clines of i and 0 according to the
angle θ.

Now we consider Möbius transformations that fix just one point. One such
Möbius transformation comes to mind immediately. For any complex number
d, the translation T (z) = z + d fixes just ∞. In the exercises, you prove that
translations are the only Möbius transformations that fix ∞ and no other point.

Now suppose T fixes p 6= ∞ (and no other point). Let S(z) = 1
z−p be a

Möbius transformation taking p to ∞, and let U = S ◦ T ◦ S−1. Then U(∞) =
S(T (S−1(∞))) = S(T (p)) = S(p) = ∞, and U fixes no other point. Thus,
U(z) = z + d for some complex constant d.

The composition equation S ◦T = U ◦S gives the following equation called the
normal form of a Möbius transformation T fixing p 6= ∞ (and no other
point):

Normal form, one fixed point p 6=∞.

1
T (z)− p = 1

z − p
+ d

Observe that U(z) = z + d pushes points along lines parallel to one another in
the direction of d (as in the right of Figure 3.5.12). All of these parallel lines meet
at ∞ and are mutually tangent at this point. The map S−1 takes this system of
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clines to a system of clines that meet just at p, and are tangent to one another at
p, as pictured. The slope of the single line in this system depends on the value of
the constant d. In fact, the single line in the system of clines is the line through p
and T (∞) (see Exercise 3.5.12 for details).

p

S

S−1

d

0

Figure 3.5.12 A parabolic map fixing p pushes points along clines that are
mutually tangent at p.

A map that fixes just p will push points along such a system of clines that are
mutually tangent at p. Such a map is called parabolic. In a sense, a parabolic
map sends points both toward and away from p along these clines, just as any
translation pushes points along a line toward ∞ and also away from ∞.

Example 3.5.13 Normal form, one fixed point..

Consider T (z) = (7z − 12)/(3z − 5). To find its normal form we start by
finding its fixed points.

z = T (z)
z(3z − 5) = 7z − 12

3z2 − 12z + 12 = 0
z2 − 4z + 4 = 0

(z − 2)2 = 0
z = 2.

So T is parabolic and has normal form

1
T (z)− 2 = 1

z − 2 + d.

To find d plug in the image of another point. Using the original
description of the map, we know T (0) = 2.4, so

1
0.4 = 1

−2 + d

so that d = 3. The normal form is then

1
T (z)− 2 = 1

z − 2 + 3.



68 CHAPTER 3. TRANSFORMATIONS

Exercises

1. Complete the proof of Theorem 3.5.8.

2. Analyze each of the Möbius transformations below by finding the fixed points,
finding the normal form, and sketching the appropriate coordinate system of
clines, being sure to indicate the motion of the transformation.

a. T (z) = z

2z − 1

b. T (z) = −z
(1 + i)z − i

c. T (z) = 3iz − 5
z − i

3. A transformation T is called an involution if it is its own inverse. If this is
the case, then T ◦ T is the identity transformation. Prove that if a Möbius
transformation T is an involution and not the identity transformation, it must
be elliptic.

4. Suppose a Möbius transformation T has the following property: There are
distinct points a, b, c in the complex plane C such that T (a) = b, T (b) =
c, T (c) = a.

a. What is the image of the unique cline through a, b, and c under T?

b. Explain why the triple composition T ◦ T ◦ T is the identity transforma-
tion.

c. Prove that T is elliptic.

5. Prove that if the Möbius transformation T fixes just ∞, then T (z) = z + d
for some complex constant d.

6. Find the Möbius transformation that fixes 2 and 4 and sends 2 + i to ∞.
7. Use the normal form to build and classify a Möbius transformation that fixes

4 and 8 and sends i to 0.
8. Suppose T is an elliptic Möbius transformation that fixes the distinct, finite

points p and q.
a. Prove that the points z∞ and w∞ as defined in Lemma 3.5.7 lie on the

perpendicular bisector of segment pq.

b. Show that T is the composition of two inversions about clines that
contain p and q.

9. Suppose the Möbius transformation T fixes the distinct, finite points p and q
and sends z∞ to∞ and∞ to w∞. By Lemma 3.5.7 we know p+q = z∞+w∞.
Use the normal form of T to prove the following facts.
(a) If T is elliptic then the four points p, q, z∞, and w∞ form a rhombus.

Under what conditions is this rhombus actually a square?

(b) If T is hyperbolic then these 4 points all lie on the same Euclidean line.

(c) If T is loxodromic, then under what conditions do these four points
determine a rectangle?
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10. Prove that any pair of nonintersecting clines in C may be mapped by a Möbius
transformation to concentric circles.

11. Suppose T = iC1 ◦ iC2 where C1 and C2 are clines that do not intersect. Prove
that T has two fixed points and these points are on all clines perpendicular to
both C1 and C2.

12. Suppose T (z) is parabolic with normal form

1
T (z)− p = 1

z − p
+ d.

Prove that the line through p and p+ 1
d gets sent to itself by T .

13. Analyze T (z) = [(1+3i)z−9i]/[iz+(1−3i)] by finding the fixed points, finding
the normal form, and sketching the appropriate system of clines indicating
the motion of the transformation.

14. Find a parabolic transformation with fixed point 2 + i for which T (∞) = 8.

15. Given distinct points p, q, and z in C, prove there exists a type II cline of p
and q that goes through z.
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4

Geometry

Recall the two paragraphs from Section 1.2 that we intended to spend time making
sense of and working through:

Whereas Euclid’s approach to geometry was additive (he started with
basic definitions and axioms and proceeded to build a sequence of
results depending on previous ones), Klein’s approach was subtractive.
He started with a space and a group of allowable transformations
of that space. He then threw out all concepts that did not remain
unchanged under these transformations. Geometry, to Klein, is the
study of objects and functions that remain unchanged under allowable
transformations.
Klein’s approach to geometry, called the Erlangen Program after the
university at which he worked at the time, has the benefit that all
three geometries (Euclidean, hyperbolic and elliptic) emerge as special
cases from a general space and a general set of transformations.

We now have both the space (C+) and the transformations (Möbius transforma-
tions), and are just about ready to embark on non-Euclidean adventures. Before
doing so, however, one more phrase needs defining: group of transformations.
This phrase has a precise meaning. Not every collection of transformations is
lucky enough to form a group.

4.1 The Basics
Definition 4.1.1 A collection G of transformations of a set A is called a group
of transformations if G has the following three properties:

1. Identity: G contains the identity transformation T : A → A defined by
T (a) = a for all a ∈ A.

2. Closure: If T and S are two transformations in G, then the composition
T ◦ S is in G.

3. Inverses: If T is in G, then the inverse T−1 is in G.

♦

71
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The reader who has seen group theory will know that in addition to the three
properties listed in our definition, the group operation must satisfy a property
called associativity. In the context of transformations, the group operation is
composition of transformations, and this operation is always associative: if R,S,
and T are transformations of a set A, then the transformation (R ◦ S) ◦ T equals
the transformation R ◦ (S ◦ T ). So, in the present context of transformations, we
omit associativity as a property that needs checking.

Example 4.1.2 Group of translations.

Let T denote the collection of all translations of the plane C. In particular,
for each b ∈ C, let Tb : C→ C denote the translation Tb(z) = z + b. The
set T consists of all Tb, for all b ∈ C. That is,

T = {Tb | b ∈ C}.

Show that T is a group of transformations.
Solution. To verify T forms a group, we must check the three properties.

1. T contains the identity: Since 0 ∈ C, T contains T0(z) = z + 0 = z,
which is the identity transformation of C.

2. T has closure: Suppose Tb and Tc are in T . Then Tb ◦ Tc(z) =
Tb(z + c) = (z + c) + b = z + (b + c). But this map is exactly
the translation Tb+c, which is in T since b + c ∈ C. Thus, the
composition of two translations is again a translation. Notationally,
we have shown that Tb ◦ Tc(z) = Tb+c(z).

3. T contains inverses: Suppose Tb is in T , and consider T−b, which is
in T since −b ∈ C. Note that Tb◦T−b(z) = Tb(z−b) = (z−b)+b = z,
and T−b ◦ Tb(z) = T−b(z + b) = (z + b) − b = z. Thus, T−b is the
inverse of Tb, and this inverse is in T . Notationally, T−1

b = T−b: the
inverse of translation by b is translation back by −b.

Definition 4.1.3 Let S be any set, and G a group of transformations on S. The
pair (S,G) is called a geometry. A figure in the geometry is any subset A of
S. An element of S is called a point in the geometry. Two figures A and B are
called congruent, denoted A ∼= B, if there exists a transformation T in G such
that T (A) = B. ♦

Although a figure in a geometry (S,G) is defined to be a subset of S, we make
one abuse of notation and sometimes treat points as figures. For instance, we
might write a ∼= b for two points a and b in S when, formally, we mean {a} ∼= {b}.
Incidentally, a ∼= b in the geometry (S,G) means there exists a transformation
T ∈ G such that T (a) = b.

Let’s look at some examples now to help sort through these definitions.
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Example 4.1.4 Finite group of rotations.

Consider the set H = {R0, Rπ/2, Rπ, R3π/2} consisting of four rotations
of C about the origin (by 0, π/2, π, and 3π/2 radians). We observe first
that H forms a group. Since R0(z) = ei0z = z, H contains the identity
transformation on C. The set also satisfies closure, and the reader can check
all possible compositions. For instance, R3π/2 ◦Rπ = Rπ/2. Finally, the
inverse of each transformation in H is again in H. Check that R−1

0 = R0,
R−1
π/2 = R3π/2, R−1

π = Rπ, and R−1
3π/2 = Rπ/2. Thus, H is a group and

we may study the geometry (C, H). For instance, is the circle C given
by |z − i| = .5 congruent to the circle D given by |z| = .5? Well, is there
a transformation in H that maps C onto D? No! The only four circles
congruent to C are pictured below. These are found by rotating C about
the origin by 0, π/2, π, or 3π/2 radians, the only allowable transformations
in this geometry.

i
C

Notice also that any point z 6= 0 is congruent to four points: z, eiπ/2z,
eiπz, and ei3π/2z. How many points are congruent to z = 0? Are all lines
congruent in this geometry? Nope. We are only allowed these few rotations,
so we have no way to map the line y = x, say, to the line y = x+ 1.

Example 4.1.5 A two-element group.

Consider reflection of C across the real axis, given by r(z) = z. Since r ◦ r
is the identity map, the set G = {1, r} is a group of transformations on
C, and we may define the geometry (C, G). Notice that while 3 + i is
congruent to 3− i in this geometry, it is not congruent to −3 + i. Also,
the circle |z − 2i| = 1 is congruent to the circle |z + 2i| = 1 but not the
circle |z − 3i| = 1.

Example 4.1.6 Translational geometry.

Let T denote the group of translations in Example 4.1.2, and consider
the geometry (C, T ). We call this geometry translational geometry.
Which figures in Figure 4.1.7 are congruent in this geometry?
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Remember, two figures are congruent if we can find a transformation
that “moves” one figure on top of the other. Since our allowable moves
here are translations, we cannot change the radius of a circle (that’s a
dilation), and we cannot rotate objects. So, in translational geometry the
only figures congruent in Figure 4.1.7 are H and L.

A

D

G

B

C

H

L

E F

Figure 4.1.7 Figures in the plane.

Definition 4.1.8 A collection D of figures in a geometry (S,G) is called an
invariant set if, for any figure A in D and any transformation T in G, T (A)
is also in D. A function f defined on D is called an invariant function if
f(B) = f(T (B)) for any figure B in D and any transformation T in G. ♦

For instance, suppose D is the set of all lines in C. Let f be the function
that takes a line to its slope. In translational geometry, (C, T ), the set D of all
lines is an invariant set because if A is any line, then so is its image, T (A), under
any translation T in T . Furthermore, f is an invariant function because any
translation of any line preserves the slope of that line.

Of course, two figures in an invariant set need not be congruent. For instance,
in translational geometry the set D of all lines is an invariant set, although if lines
A and B in D have different slopes then they are not congruent. This feature
of the set D makes it seem too big, in some sense. Can invariant sets be more
exclusive, containing only members that are congruent to one another? You bet
they can.

Definition 4.1.9 A set of figures D in a geometry is called minimally invariant
if no proper subset of it is also an invariant set. ♦

For instance, the set of all lines is not a minimally invariant set in translational
geometry because it has proper subsets that are also invariant sets. One such
subset consists of all lines with slope 8.

Theorem 4.1.10 An invariant set D of figures in a geometry (S,G) is minimally
invariant if and only if any two figures in D are congruent.

Proof. First assume D is a minimally invariant set in the geometry (S,G),
and suppose A and B are arbitrary figures in D. We must show that A ∼= B.

We begin by constructing a new set of figures, the one consisting of A and all
transformations of A. In particular, define

A = {T (A) | T ∈ G}.
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Notice that for any T ∈ G, T (A) is in the set D since D is invariant. This
means that A is a subset of D.

Furthermore, A itself is an invariant set, thanks to the group nature of G. In
particular, if C is any member of A, then C = T0(A) for some particular T0 in G.
Thus, applying any transformation T to C,

T (C) = T (T0(A)) = T ◦ T0(A)

and since T ◦ T0 is again a transformation in G, T ◦ T0(A) lives in A.
So we’ve established two facts: (1) A is a subset of D, and (2) A is an invariant

set. Since D is a minimally invariant set it follows by definition that A = D. This
means that the given set B, which is in D, is also in A. That is, A ∼= B.

The proof of the other direction is left as an exercise for the reader. �

The proof of Theorem 4.1.10 illustrates a convenient way to find minimally
invariant sets: If A is a figure in (S,G), then A = {T (A) | T ∈ G} is a minimally
invariant set.

Example 4.1.11 Euclidean geometry.

Euclidean geometry is the geometry (C, E), where E consists of all
transformations of the form T (z) = eiθz + b, where θ is a real number
and b is in C. Note that E consists of precisely those general linear
transformations of the form T (z) = az+b in which |a| = 1. In the exercises,
you check that this collection is indeed a group of transformations.

The group E includes rotations and translations, but not dilations.
Let’s take a look at some familiar properties of objects that should be
invariant in Euclidean geometry.

The Euclidean distance between two points z1 and z2 is defined to
be |z1 − z2|. To show that this is an invariant function of (C, E), we need
to show that for any T in the group E , the distance between z1 and z2
equals the distance between T (z1) and T (z2):

|T (z1)− T (z2)| = |(eiθz1 + b)− (eiθz2 + b)|
= |eiθ(z1 − z2)|
= |eiθ||z1 − z2|
= |z1 − z2| (since |eiθ| = 1).

Thus, Euclidean distance is preserved in (C, E).
Angles are preserved as well. We have already proved that general

linear transformations preserve angles (Theorem 3.1.12), and Euclidean
transformations are general linear transformations, so angles are preserved
in (C, E).

Definition 4.1.12 A geometry (S,G) is called homogeneous if any two points
in S are congruent, and isotropic if the transformation group contains rotations
about each point in S. ♦
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Example 4.1.13 Homogeneous geometry.

Translational geometry (C, T ) is homogeneous because there is a translation
that will map any point of C to any other point of C. That is, any two points
of C are congruent. Of course, without rotations, translational geometry
is not isotropic. Here’s a formal argument that (C, T ) is homogeneous:

Suppose p and q are arbitrary points in C. We must find a translation
T in T such that T (p) = q. Let w = q − p, and consider the translation
Tw in T . Then Tw(p) = p + w = p + (q − p) = q. Thus Tw(p) = q and
p ∼= q. Since p and q are arbitrary points in C it follows that (C, T ) is
homogeneous.

Euclidean geometry (C, E) is homogeneous since it contains all transla-
tions, but the geometries of Example 4.1.4 and Example 4.1.5 are not.

Definition 4.1.14 A metric for a geometry (S,G) is an invariant function
d : S × S → R mapping each ordered pair (x, y) of elements from S to a real
number such that

1. d(x, y) ≥ 0 for all x, y ∈ S and d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ S.

3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

♦

Example 4.1.15 Euclidean metric.

The Euclidean metric is defined by d(z, w) = |z − w|. We have already
shown that d is preserved under Euclidean transformations, and the first
two conditions of being a metric follow directly from the definition of
modulus. We establish the triangle inequality by direct computation in
the following lemma.

Lemma 4.1.16 For any points z, w, v in C,

|z − w| ≤ |z − v|+ |v − w|.

Proof. If v = w then the the result holds, so we assume v 6= w. Since d
is invariant under Euclidean transformations, we may assume that v = 0 and
w = r > 0 is a point on the positive real axis. (Translate the plane by −v to send
v to 0, and then rotate about 0 until the image of w under the translation lands
on the positive real axis.) Thus, it’s enough to show that for any complex number
z and any positive real number r,

|z − r| ≤ |z|+ r.

Notice that

|z − r| ≤ |z|+ r ⇐⇒ |z − r|2 ≤ (|z|+ r)2

⇐⇒ (z − r)(z − r) ≤ |z|2 + 2r|z|+ r2

⇐⇒ |z|2 − r(z + z) + r2 ≤ |z|2 + 2r|z|+ r2
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⇐⇒ −(z + z) ≤ 2|z|
⇐⇒ −2Re(z) ≤ 2|z|
⇐⇒ −Re(z) ≤ |z|.

By letting z = a+ bi, we may restate the last inequality as

−a ≤
√
a2 + b2,

which is true since −a ≤ |a| =
√
a2 ≤

√
a2 + b2. �

Exercises
1. Find a particular translation to prove that in Figure 4.1.7 H ∼= L in transla-

tional geometry.

2. Let A be the set of all circles in C centered at the origin, and let G be the set
of all inversions about circles in A. That is,

G = {iC | C ∈ A}.

Is G a group of transformations of C+? Explain.

3. Prove that the group E of Euclidean transformations of C is indeed a group.

4. Let G be the set of all dilations of C+. That is

G = {T (z) = kz | k ∈ R, k > 0}.

Is G a group of transformations of C+? Explain.

5. True or False? Determine whether the statement is true or false, and support
your answer with an argument.

a. Any two lines are congruent in Euclidean geometry (C, E).

b. Any two circles are congruent in Euclidean geometry (C, E).

6. Prove that if a set of figures D is invariant in a geometry (S,G), and any two
figures in D are congruent, then D is minimally invariant.

7. Describe a minimally invariant set of translational geometry that contains the
figure D from Figure 4.1.7.

8. Rotational geometry is the geometry (C,R) where R is the group of
rotations about the origin. That is

R = {Rθ(z) = eiθz | θ ∈ R}.

a. Prove that R is a group of transformations.

b. Is D = {all lines in C} an invariant set in rotational geometry? Is it a
minimally invariant set?

c. Find a minimally invariant set of rotational geometry that contains the
circle |z − (2 + i)| = 4.

d. Is (C,R) homogeneous? Isotropic?
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9. Prove that the function v(z1, z2) = z1−z2 is invariant in translational geometry
(C, T ) but not rotational geometry (C,R).

10. Prove that the following function is a metric for any geometry (S,G).

d(x, y) =
{

0 if x = y;
1 if x 6= y

.

11. Prove that (C, E) is isotropic. That is, show the group E contains all rotations
about all points in C.

12. Which figures from Figure 4.1.7 are congruent in (C, E)?

13. Let’s create a brand new geometry, using the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
For each integer n, we define the transformation Tn : C→ C by Tn(z) = z+ni.
Let G denote the set of all transformations Tn for all integers n. That is,
G = {Tn | n ∈ Z}.

a. Prove that (C, G) is a geometry.

b. Consider the set of figures D consisting of all lines in the plane with
slope 4. Is D an invariant set of (C, G)? Is it minimally invariant?
Explain.

c. My favorite line, for clear and personal reasons, is y = x + 8. Please
describe a minimally invariant set of figures containing this line.

d. Determine the set of points in C congruent to i in this geometry. Is C
homogeneous?

4.2 Möbius Geometry
We spent a fair amount of time studying Möbius transformations in Chapter 3,
and this will pay dividends now.

Definition 4.2.1 Möbius Geometry is the geometry (C+,M), whereM de-
notes the group of all Möbius transformations. ♦

Without actually stating it, we essentially proved that M is a group of
transformations. Namely, we proved that the inverse of a Möbius transformation
is again a Möbius transformation, and that the composition of two Möbius
transformations is a Möbius transformation. We remark that the identity map on
C+, T (z) = z, is a Möbius transformation (of the form T (z) = (az + b)/(cz + d),
where a = d = 1, and b = c = 0), soM is a group.

Below we recast the key results from Chapter 3 in geometric terms:

• Any two clines are congruent in Möbius Geometry (Theorem 3.4.15).

• The set of all clines is a minimally invariant set of Möbius Geometry
(Theorems 3.4.5 and Theorem 3.4.15).

• The cross ratio is an invariant of Möbius Geometry (Theorem 3.4.12).

• Angle measure is an invariant of Möbius Geometry (Theorem 3.4.5).

While we’re at it, let’s restate three other facts about Möbius transformations:



SECTION 4.2. MÖBIUS GEOMETRY 79

• Any transformation in M is uniquely determined by the image of three
points.

• If T inM is not the identity map, then T fixes exactly 1 or 2 points.

• Möbius transformations preserve symmetry points.

What else? Euclidean distance is not an invariant function of Möbius Geometry.
To see this, one need look no further than the map T (z) = 1/z. If p = 2 and
q = 3 (two points on the real axis) then d(p, q) = |p − q| = 1. However, their
image points T (p) = 1/2 and T (q) = 1/3 have a Euclidean distance between them
of 1/6. So our old-fashioned notion of distance goes out the window in Möbius
geometry.

We emphasize that angles are preserved in Möbius geometry, which is a good
thing. Why is this a good thing? Remember that in the distant past, humanity
set out looking for a geometry in which Euclid’s first 4 postulates hold true, but
the 5th one fails. The 4th postulate states that all right angles equal one another.
This means that if Ralph is holding a right angle over in the corner, and Randy
is holding one down the block somewhere, we ought to be able to transform one
onto the other and see that the angles are the same. Transformations do not
change angles.

Rather than pursue the very general Möbius geometry, we take the preceeding
facts and apply them straight away to two of its special “subgeometries,” hyperbolic
geometry and elliptic geometry.

Exercises

1. Which figures in Figure 4.2.2 are congruent in (C+,M).

2. Describe a minimally invariant set in (C+,M) containing the “triangle” com-
prised of the three vertices 0, 1, and i and the three Euclidean line segments
connecting them. Be as specific as possible about the members of this set.

3. Suppose p and q are distinct, finite points in C+. Let G consist of all elliptic
Möbius transformations that fix p and q. We consider the geometry (C+, G).

a. Show that G is a group of transformations.

b. Determine a minimally invariant set in (C+, G) that contains the Eu-
clidean line through p and q.

c. Determine a minimally invariant set in (C+, G) that contains the per-
pendicular bisector of segment pq.

d. For any point z 6= p, q in C+, characterize all points in C+ congruent to
z.

e. Is (C+, G) homogeneous?

4. Repeat the previous exercise for the set G consisting of all hyperbolic Möbius
transformations that fix p and q.
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A B C D

E F G H

Figure 4.2.2 Which of these figures are congruent in (C+,M)?



5

Hyperbolic Geometry

Hyperbolic geometry can be modelled in many different ways. We will focus here
on the Poincaré disk model, developed by Henri Poincaré (1854-1912) in around
1880. Poincaré did remarkable work in mathematics, though he was never actually
a professor of mathematics. He was particularly interested in the relationship
between mathematics, physics, and psychology. He began studying non-Euclidean
geometry in detail after it appeared in his study of two apparently unrelated
disciplines: differential equations and number theory.1 Poincaré took Klein’s view
that geometries are generated by sets and groups of transformations on them. We
consider a second model of hyperbolic geometry, the upper half-plane model, in
Section 5.5.

5.1 The Poincaré Disk Model
Definition 5.1.1 The Poincaré disk model for hyperbolic geometry is the
pair (D,H) where D consists of all points z in C such that |z| < 1, and H consists
of all Möbius transformations T for which T (D) = D. The set D is called the
hyperbolic plane, and H is called the transformation group in hyperbolic
geometry. ♦

We note that H does indeed form a group of transformations, a fact that
is worked out in the exercises. Throughout this chapter the unit circle will be
called the circle at infinity, denoted by S1

∞. Of course, the circle at infinity
is not included in the hyperbolic plane D but bounds it. The circle at infinity
will be used extensively in our investigations. We note here that any Möbius
transformation that sends D to itself also sends S1

∞ to itself.
1See Arthur Miller’s chapter in [13] for a discussion of Poincaré’s diverse interests.

81
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0
C

S1
∞

Figure 5.1.2 Inversion about a cline orthogonal to the unit circle takes D to D.
Consider a cline C that is orthogonal to the circle at infinity S1

∞, as in
Figure 5.1.2. If we invert about C, S1

∞ is inverted to itself. Moreover, this
inversion takes the interior of S1

∞, namely the hyperbolic plane D, to itself as
well, (Exercise 3.2.10). It follows that compositions of two such inversions is a
Möbius transformation that sends D to itself, and is thus in the group H. These
inversions play an important role in hyperbolic geometry, and we give them a
name.

An inversion in a cline C that is orthogonal to S1
∞ is called a reflection of

the hyperbolic plane, or, a hyperbolic reflection.
It turns out that these reflections generate all the maps in H. For instance,

rotation about the origin is a Möbius transformation that sends D to itself, so it
is in H. But rotation about the origin is also the composition of two reflections
about lines that intersect at the origin. Since any line through the origin meets
the unit circle at right angles, reflection about such a line is a reflection of the
hyperbolic plane, so rotation about the origin is the composition of two such
reflections. We now prove the following general result.

Theorem 5.1.3 Any Möbius transformation in H is the composition of two
reflections of the hyperbolic plane.

Proof. Suppose T is a Möbius transformation that sends D to itself. This
means some point in D, say z0, gets sent to the origin, 0. Let z∗0 be the point
symmetric to z0 with respect to S1

∞. Since T sends the unit circle to itself, and
Möbius transformations preserve symmetry points, it follows that T sends z∗0 to
∞. Furthermore, some point z1 on S1

∞ gets sent to the point 1.
If z0 = 0, then z∗0 = ∞, and T fixes 0 and ∞. Then by Example 3.5.3,

T (z) = reiθz is a dilation followed by a rotation. However, since T also sends D
onto D, the dilation factor must be r = 1. So T is simply a rotation about the
origin, which is the composition of two hyperbolic reflections about Euclidean
lines through the origin.

Now assume z0 6= 0. In this case, by using z0, z
∗
0 , and z1 as anchors, we may

achieve T via two hyperbolic reflections, as follows:
First, invert about a circle C orthogonal to S1

∞ that sends z0 to the origin.
Such a circle does indeed exist, and we will construct it now. As in Figure 5.1.4,

draw circle C1 with diameter 0z∗0 . Let p be a point of intersection of C1 and the
unit circle S1

∞. Construct the circle C through p centered at z∗0 . Since ∠0pz∗0 is
right, S1

∞ is orthogonal to C, so inversion about C sends S1
∞ to itself. Furthermore,

since z∗0 gets sent to ∞ and symmetry points must be preserved, inversion in C
sends z0 to 0.

Thus, the first inversion takes z0 to 0 and z∗0 to ∞. To build T we must also
send z1 to 1. Note that inversion in circle C will have sent z1 to some point z′1 on
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the unit circle (since S1
∞ is sent to itself). Now reflect across the line through the

origin that bisects angle ∠10z′1. This sends z′1 to 1, sends D to D, and leaves 0
and∞ fixed. Composing these two inversions yields a Möbius transformation that
sends z0 to 0, z∗0 to ∞ and z1 to 1. Since a Möbius transformation is uniquely
determined by the image of three points, this Möbius transformation is T . �

S1
∞

C

C1

z00
z∗0

p

Figure 5.1.4 Constructing a circle C orthogonal to S1
∞ about which z0 is inverted

to 0.
Notice that in proving Theorem 5.1.3 we proved the following useful fact.

Lemma 5.1.5 Given z0 in D and z1 on S1
∞ there exists a transformation in H

that sends z0 to 0 and z1 to 1.
Therefore, one may view any transformation in H as the composition of

two inversions about clines orthogonal to S1
∞. Moreover, these maps may be

categorized according to whether the two clines of inversion intersect zero times,
once, or twice. In Figure 5.1.6 we illustrate these three cases. In each case, we
build a transformation T in H by inverting about the solid clines in the figure
(first about L1, then about L2). The figure also tracks the journey of a point
z under these inversions, first to z′ by inverting about L1, then onto T (z) by
inverting z′ about L2. The dashed clines in the figure represent some of the
clines of motion, the clines along which points are moved by the transformation.
Notice these clines of motion are orthogonal to both clines of inversion. Let’s work
through the three cases in some detail.
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p

L1

L2

z

z′

T (z)
p

L1

L2

z

z′

T (z)

(b)p

q

L1

L2

z

z′

T (z)

(a) (b)

(c)

Figure 5.1.6 The three types of transformations in H: (a) hyperbolic rotation
(b) parallel displacement (c) hyperbolic translation.

If the two clines of inversion, L1 and L2, intersect inside D, say at the point p,
then they also intersect outside D at the point p∗ symmetric to p with respect
to the unit circle since both clines are orthogonal to S1

∞. This scene is shown in
Figure 5.1.6(a). The resulting Möbius transformation will fix p (and p∗), causing a
rotation of points in D around p along type II clines of p and p∗. Not surprisingly,
we will call this type of map in H a rotation of the hyperbolic plane about
the point p; or, if the context is clear, we call such a map a rotation about p.

If the clines of inversion intersect just once, then it must be at a point p on
the unit circle. Otherwise the symmetric point p∗, which would be distinct from
p, would also belong to both clines, giving us two points of intersection. The
resulting map moves points along circles in D that are tangent to the unit circle at
this point p. Circles in D that are tangent to the unit circle are called horocycles,
and this type of map is called a parallel displacement. See Figure 5.1.6(b).

If the clines of inversion do not intersect, then at least one of the clines must be
a circle; and according to Theorem 3.2.16, there are two points p and q symmetric
with respect to both clines. These two points will be fixed by the resulting Möbius
transformation, since each inversion sends p to q and q to p. Furthermore, these
two fixed points must live on the unit circle by a symmetric points argument (the
details of which are left as an exercise). In other words, if the clines of inversion
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L1 and L2 do not intersect, then they are type II clines of the fixed points p
and q of the resulting transformation in H. Moreover, this transformation will
push points along type I clines of p and q. We call such a Möbius transformation
in H a translation of the hyperbolic plane or, simply, a translation. See
Figure 5.1.6(c).

p

z

T (z)T 2(z)

L1

L2

p

q

z

T (z)

T 2(z)

L1

L2

(a) (b)

Figure 5.1.7 Moving an ‘M’ about the hyperbolic plane, by (a) rotation about
p; and (b) translation fixing ideal points p and q.

Example 5.1.8 Moving an ‘M’ around in (D,H).

Figure 5.1.7(a) depicts the image of the figure M (resembling the letter
‘M’) under two applications of a rotation T of the hyperbolic plane about
point p. This rotation is generated by two inversions about clines L1 and
L2 that intersect at p (and meet S1

∞ at right angles). The figure M is
pictured, as is T (M) and T (T (M)). The figure also tracks successive
images of a point z on M : z gets mapped to T (z) which gets mapped to
T 2(z) = T (T (z)). By this map T , any point z in D rotates around p along
the unique type II cline of p and p∗ that contains z.

Figure 5.1.7(b) depicts the image of M under two applications of a
translation of the hyperbolic plane. The translation is generated by two
inversions about non-intersecting clines L1 and L2 (that meet S1

∞ at right
angles). The fixed points of the map are the points p and q on the circle
at infinity. Under this translation, any point z in D heads away from p
and toward q on the unique cline through the three points p, q, and z.

We now derive the following algebraic description of transformations in H:

Transformations in H.

Any transformation T in the group H has the form

T (z) = eiθ
z − z0

1− z0z

where θ is some angle, and z0 is the point inside D that gets sent to 0.
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Assume z0 is in D, z1 is on the unit circle S1
∞, and that the map T in H sends

z0 7→ 0, z∗0 7→ ∞ and z1 7→ 1. Using the cross ratio,

T (z) = (z, z1; z0, z
∗
0) = z1 − z∗0

z1 − z0
· z − z0

z − z∗0
.

But z∗0 = 1
z0
, so

T (z) = z1 − 1/z0

z1 − z0
· z − z0

z − 1/z0
= z0z1 − 1

z1 − z0
· z − z0

z0z − 1 .

Now, the quantity
z0z1 − 1
z1 − z0

is a complex constant, and it has modulus equal to 1. To see this, observe that
since 1 = |z1|2 = z1z1,

z0z1 − 1
z1 − z0

= z0z1 − z1z1

z1 − z0

= −z1(z1 − z0)
z1 − z0

.

Since |z1| = 1 and, in general |β| = |β| we see that this expression has modulus
1, and can be expressed as eiθ for some θ. Thus, if T is a transformation in H it
may be expressed as

T (z) = eiθ
z − z0

1− z0z

where θ is some angle, and z0 is the point inside D that gets sent to 0.
Is the converse true? Is every transformation in the form above actually a

member of H? The answer is yes, and the reader is asked to work through the
details in the exercises.

Exercises
1. Prove that (D,H) is homogeneous.

2. Suppose T is a Möbius transformation of the form

T (z) = eiθ
z − z0

1− z0z
,

where z0 is in D. Prove that T maps D to D by showing that if |z| < 1 then
|T (z)| < 1.

3. Construct the fixed points of the hyperbolic translation defined by the inversion
of two nonintersecting clines that intersect S1

∞ at right angles, as shown in
the following diagram.

S1
∞
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4. Suppose p and q are two points in D. Construct two clines orthogonal to S1
∞

that, when inverted about in composition, send p to 0 and q to the positive
real axis.

5. Prove that any two horocycles in (D,H) are congruent.

6. Prove that H is a group of transformations.

5.2 Figures of Hyperbolic Geometry
The Euclidean transformation group, E , consisting of all (Euclidean) rotations
and translations, is generated by reflections about Euclidean lines. Similarly, the
transformations in H are generated by hyperbolic reflections, which are inversions
about clines that intersect the unit circle at right angles. This suggests that these
clines ought to be the lines of hyperbolic geometry.

Definition 5.2.1 A hyperbolic line in (D,H) is the portion of a cline inside D
that is orthogonal to the circle at infinity S1

∞. A point on S1
∞ is called an ideal

point. Two hyperbolic lines are parallel if they share one ideal point. ♦

Figure 5.2.2 A few hyperbolic lines in the Poincaré disk model.

Theorem 5.2.3 There exists a unique hyperbolic line through any two distinct
points in the hyperbolic plane.

Proof. Let p and q be arbitrary points in D. Construct the point p∗ symmetric
to p with respect to the unit circle, S1

∞. Then there exists a cline through p, q and
p∗, and this cline will be orthogonal to S1

∞, so it gives a hyperbolic line through
p and q. Since there is just one cline through p, q and p∗, this hyperbolic line is
unique. �

Which hyperbolic lines happen to be portions of Euclidean lines (instead of
Euclidean circles)? A Euclidean line intersects a circle at right angles if and only
if it goes through the center of the circle. Thus, the only hyperbolic lines that
also happen to be Euclidean lines are those that go through the origin.

One may also use a symmetric points argument to arrive at this last fact. Any
Euclidean line goes through ∞. To be a hyperbolic line (i.e., to be orthogonal
to S1

∞), the line must also pass through the point symmetric to ∞ with respect
to the unit circle. This point is 0. Thus, to be a hyperbolic line in (D,H), a
Euclidean line must go through the origin.
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Theorem 5.2.4 Any two hyperbolic lines are congruent in hyperbolic geometry.

Proof. We first show that any given hyperbolic line L is congruent to the
hyperbolic line on the real axis. Suppose p is a point on L, and v is one of its
ideal points. By Lemma 5.1.5 there is a transformation T in H that maps p to 0,
v to 1, and p∗ to ∞. Thus T (L) is the portion of the real axis inside D, and L
is congruent to the hyperbolic line on the real axis. Since any hyperbolic line is
congruent to the hyperbolic line on the real axis, the group nature of H ensures
that any two hyperbolic lines are congruent. �

v

1
p

0

L

T (L)

Figure 5.2.5 Any hyperbolic line is congruent to the hyperbolic line on the real
axis.

Theorem 5.2.6 Given a point z0 and a hyperbolic line L not through z0, there
exist two distinct hyperbolic lines through z0 that are parallel to L.

Proof. Consider the case where z0 is at the origin. The line L has two
ideal points, call them u and v, as in Figure 5.2.7. Moreover, since L does not
go through the origin, Euclidean segment uv is not a diameter of the unit circle.
Construct one Euclidean line through 0 and u, and a second Euclidean line through
0 and v. (These lines will be distinct because uv is not a diameter of the unit
circle.) Each of these lines is a hyperbolic line through 0, and each shares exactly
one ideal point with L. Thus, each is parallel to L. The fact that the result holds
for general z0 is left as an exercise. �

u

v
0

L

Figure 5.2.7 Through a point not on a given hyperbolic line L there exist two
hyperbolic lines parallel to L.

Figure 5.2.7 illustrates an unusual feature of parallel lines in hyperbolic
geometry: there is no notion of transitivity. In Euclidean geometry we know that
if line L is parallel to line M , and line M is parallel to line N , then line L is
parallel to line N . This is not the case in hyperbolic geometry.



SECTION 5.2. FIGURES OF HYPERBOLIC GEOMETRY 89

Example 5.2.8 Hyperbolic triangles.

Three points in the hyperbolic plane D that are not all on a single hyperbolic
line determine a hyperbolic triangle. The hyperbolic triangle ∆pqr is
pictured below. The sides of the triangle are portions of hyperbolic lines.

Are all hyperbolic triangles congruent? No. Since transformations
in H are Möbius transformations they preserve angles, so triangles with
different angles are not congruent.

p

q

r

The next section develops a distance function for the hyperbolic plane. As
in Euclidean geometry, we want to be able to compute the distance between
two points, the length of a path, the area of a region, and so on. Moreover, the
distance function should be an invariant; the distance between points should
not change under a transformation in H. With this in mind, consider again a
hyperbolic rotation about a point p, as in Figure 5.1.6(a). It fixes the point p and
moves points around type II clines of p and p∗. If the distance between points is
unchanged under transformations in H, then all points on a given type II cline
of p and p∗ will be the same distance away from p. This leads us to define a
hyperbolic circle as follows.

Definition 5.2.9 Suppose p is any point in D, and p∗ is the point symmetric
to p with respect to the unit circle. A hyperbolic circle centered at p is a
Euclidean circle C inside D that is a type II circle of p and p∗. ♦

Figure 5.2.10 shows a typical hyperbolic circle. This circle is centered at
point p and contains point q. Construction of such a circle may be achieved with
compass and ruler as in Exercise 5.2.5.

p

q

p∗

C

Figure 5.2.10 A hyperbolic circle centered at p through q.
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Theorem 5.2.11 Given any points p and q in D, there exists a hyperbolic circle
centered at p through q.

Proof. Given p, q ∈ D, construct p∗, the point symmetric to p with respect
to S1

∞. Then by Exercise 3.5.15 there exists a type II cline of p and p∗ that goes
through q. This type II cline lives within D because S1

∞ is also a type II cline of
p and p∗, and distinct type II clines cannot intersect. This type II cline is the
hyperbolic circle centered at p through q. �

Exercises
1. Suppose C is a hyperbolic circle centered at z0 through point p. Show that

there exists a hyperbolic line L tangent to C at p, and that L is perpendicular
to hyperbolic segment z0p.

2. Constructing a hyperbolic line through two given points.
a. Given a point p in D, construct the point p∗ symmetric to p with respect

to the unit circle (see Figure 3.2.18).

b. Suppose q is a second point in D. Construct the cline through p, q, and
p∗. Call this cline C. Explain why C intersects the unit circle at right
angles.

c. Consider the portion of cline C you constructed in part (b) that lies in
D. This is the unique hyperbolic line through p and q. Mark the ideal
points of this hyperbolic line.

3. Can two distinct hyperbolic lines be tangent at some point in D? Explain.

4. Suppose L is a hyperbolic line that is part of a circle C. Can the origin of the
complex plane be in the interior of C? Explain.

5. Constructing a hyperbolic circle centered at a point p through a point q.
Suppose p and q are two points in D, and that q is not on the line through

p and p∗ - the point symmetric to p with respect to the unit circle.

a. Find the center of the Euclidean circle through p, p∗, and q. Call the
center point o.

b. Construct the segment oq.

c. Construct the perpendicular to oq at q. This perpendicular intersects
the Euclidean line through p and p∗. Call the intersection point o′.

d. Construct the Euclidean circle centered at o′ through q.

e. Prove that this circle is the hyperbolic circle through q centered at p.

6. Explain why Theorem 5.2.6 applies in the general case, when z0 is not at the
origin.

7. Given a point and a hyperbolic line not passing through it, prove that there
is a hyperbolic line through the point that is perpendicular to the given line.
Is this perpendicular unique?
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5.3 Measurement in Hyperbolic Geometry
In this section we develop a notion of distance in the hyperbolic plane. If someone
is standing at point p and wants to get to point q, he or she should be able to say
how far it is to get there, whatever the route taken.

The distance formula is derived following the approach given in Section 30 of
Boas’ text [2]. We first list features our distance function ought to have, and use
the notation that dH(p, q) represents the hyperbolic distance from p to q in the
hyperbolic plane D.

1. The distance between 2 distinct points should be positive.

2. The shortest path between 2 points should be on the hyperbolic line con-
necting them.

3. If p, q, and r are three points on a hyperbolic line with q between the other
two then dH(p, q) + dH(q, r) = dH(p, r).

4. Distance should be preserved by transformations in H. (A lunch pail
shouldn’t shrink if it is moved to another table.) In other words, the
distance formula should satisfy

dH(p, q) = dH(T (p), T (q))

for any points p and q in D, and any transformation T in H.

5. In the limit for small distances, hyperbolic distance should be proportional
to Euclidean distance.

Perhaps the least obvious of the features listed is the last one. One theme of
this text is that locally, on small scales, non-Euclidean geometry behaves much
like Euclidean geometry. A small segment in the hyperbolic plane is approximated
to the first order by a Euclidean segment. Small hyperbolic triangles look like
Euclidean triangles and hyperbolic angles correspond to Euclidean angles; the
hyperbolic distance formula will fit with this theme.

To find the distance function, start with a point’s distance from the origin.
Given a point z in D, rotate about 0 so that z gets sent to the point x = |z| on
the positive real axis.

We may find a hyperbolic line L about which x gets reflected to the origin.
Such a hyperbolic line is constructed in the proof of Theorem 5.1.3. Recall, the
line L is on the circle centered at x∗ (the point symmetric to x with respect
to to S1

∞) that goes through the points at which S1
∞ intersects the circle with

diameter 0x∗. Let x+ h be a point near x on the positive real axis, and suppose
x+ h gets inverted to the point w, as depicted in Figure 5.3.1. One can show (in
Exercise 5.3.1) that

w = −h
1− x2 − hx

.
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xw 0 x+ h

L

Figure 5.3.1 Reflection of the hyperbolic plane sending x to 0 and x+ h to w.
If distance is to be preserved by transformations in H,

dH(x, x+ h) = dH(0, w). (1)

Also, 0, x, and x + h are all on the same hyperbolic line (the real axis), so
assuming h > 0

dH(0, x) + dH(x, x+ h) = dH(0, x+ h). (2)
For x ∈ R define the function d(x) = dH(0, x) which is the hyperbolic distance

of x to the origin. Then (2) and (1) may be combined to give

d(x+ h)− d(x) = d(w).

Divide both sides by h to get

d(x+ h)− d(x)
h

= d(w)
h

.

As h→ 0 we obtain
d′(x) = lim

h→0

d(w)
h

.

We now interrupt this derivation with an important point. In the limit for
small w, the hyperbolic distance of w from 0, d(w), is proportional to the Euclidean
distance |w − 0| = |w|. Since w is the image of x+ h under the inversion and x
gets inverted to 0, it follows that w → 0 as h→ 0. So, we assume that

lim
h→0

d(w)
|w|

= k

for some constant k. Following convention, we set the constant of proportionality
to k = 2, as this makes length and area formulas look very nice later on. Now,
back to the derivation.

d′(x) = lim
h→0

d(w)
h

= lim
h→0

d(w)
|w|
|w|
h

= lim
h→0

[
2 · h

(1− x2 − hx)h

]
= 2

1− x2 .

To get back to the distance function d(x) we integrate:∫ 2
1− x2 dx =

∫ ( 1
1− x + 1

1 + x

)
dx (partial fractions)
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= − ln(1− x) + ln(1 + x)

d(x) = ln
(

1 + x

1− x

)
,

so we arrive at the following distance formula.

The hyperbolic distance from 0 to z.

The hyperbolic distance from 0 to a point z in D is

dH(0, z) = ln
(

1 + |z|
1− |z|

)
.

Notice that if z inches its way in D out toward the circle at infinity (i.e.,
|z| → 1), the hyperbolic distance from 0 to z approaches ∞. This is a good
thing. Thinking of Euclid’s postulates, this notion of distance satisfies one of our
fundamental requirements: One can produce a hyperbolic segment to any finite
length.

To arrive at a general distance formula dH(p, q), observe something curious.
The hyperbolic line through 0 and x has ideal points -1 and 1. Furthermore, the
expression (1 + x)/(1− x) corresponds to the cross ratio of the points 0, x, 1, and
-1. In particular,

(0, x; 1,−1) = 0− 1
0 + 1 ·

x+ 1
x− 1 = 1 + x

1− x .

Thus,
dH(0, x) = ln((0, x; 1,−1)).

We can now derive a general distance formula, assuming the invariance of
distance under transformations in H. There is a transformation T in H that takes
p to the origin and q to some spot on the positive real-axis, call this spot x (see
Figure 5.3.2). Thus,

dH(p, q) = dH(T (p), T (q)) (invariance of distance)
= dH(0, x)
= ln((0, x; 1,−1))
= ln((p, q;u, v)), (invariance of cross ratio)

where u and v are the ideal points of the hyperbolic line through p and q. To be
precise, u is the ideal point you would head toward as you went from p to q, and
v is the ideal point you would head toward as you went from q to p.
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p

q

x 10

u

v

−1

T

Figure 5.3.2 To find the distance between p and q, we may first transform p to
0 and q to the positive real axis.

A working formula for dH(p, q)
One may compute the hyperbolic distance between p and q by first finding the
ideal points u and v of the hyperbolic line through p and q and then using the
formula dH(p, q) = ln((p, q;u, v)). In practice, finding coordinates for these ideal
points can be a difficult task, and it is often simpler to compute the distance
between points by first moving one of them to the origin. (This simpler approach
uses the fact that hyperbolic distance is preserved under transformations in H.
This fact will be proved shortly.)

One transformation in H that sends p to 0 has the form

T (z) = z − p
1− pz .

The map T sends q to some other point, T (q), in D. Assuming again that T
preserves distance, it follows that dH(p, q) = dH(0, T (q)), and

dH(p, q) = ln
(

1 + |T (q)|
1− |T (q)|

)
.

Making the substitution T (q) = q − p
1− pq provides us with the following working

formula for the hyperbolic distance between two points.

Theorem 5.3.3 Given two points p and q in D, the hyperbolic distance between
them is

dH(p, q) = ln
[
|1− pq|+ |q − p|
|1− pq| − |q − p|

]
.

Example 5.3.4 The distance between two points.

For instance, suppose p = 1
2 i, q = 1

2 + 1
2 i, z = .95ei5π/6 and w = −.95.

Then dH(p, q) ≈ 1.49 units, while dH(z, w) ≈ 4.64 units.
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p q
z

w

1.494.64

The arc-length differential
Now that we can compute the distance between two points in the hyperbolic
plane, we turn our attention to measuring the length of any path that takes us
from p to q.

Definition 5.3.5 A smooth curve is a differentiable map from an interval of
real numbers to the plane

r : [a, b]→ C

such that r′(t) exists for all t and never equals 0. ♦

In the spirit of this text, we write r(t) = x(t) + iy(t), in which case r′(t) =
x′(t) + iy′(t).

Recall that in calculus we first approximate the Euclidean length of a given
smooth curve r(t) = x(t) + iy(t) by summing the contributions of small straight
line segments having Euclidean length

∆s = |r(t+ ∆t)− r(t)|

=
√

[x(t+ ∆t)− x(t)]2 + [y(t+ ∆t)− y(t)]2

=

√[
x(t+ ∆t)− x(t)

∆t

]2
+
[
y(t+ ∆t)− y(t)

∆t

]2
|∆t|.

r(a)
r(b)

r(t)
r(t+ ∆t)

∆s

As ∆t→ 0 we obtain the Euclidean arc-length differential

ds =
√

(dx/dt)2 + (dy/dt)2 dt,

which may be expressed as
ds = |r′(t)| dt.

For instance, we may compute the (Euclidean) circumference of a circle with
radius a as follows. Consider r : [0, 2π]→ C by r(t) = a cos(t) + ia sin(t). This
map traces a circle of radius a centered at the origin. To find the length of this
curve, which we denote as L(r), compute the integral

L(r) =
∫ 2π

0
|r′(t)| dt
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=
∫ 2π

0
| − a sin(t) + ia cos(t)| dt

=
∫ 2π

0

√
a2 sin2(t) + a2 cos2(t) dt

=
∫ 2π

0
a dt

= 2πa.

In the hyperbolic plane, we may deduce the arc-length differential by a similar
argument. Suppose r is a smooth curve in D given by r(t) = x(t) + iy(t), for
a ≤ t ≤ b. One may approximate the length of a tiny portion of the curve, say
from r(t) to r(t + ∆t), by the hyperbolic distance between these two points,
dH(r(t), r(t+ ∆t)). To compute this distance, we first send the point r(t) to 0
by the transformation

T (z) = z − r(t)
1− r(t)z

,

so that

dH(r(t), r(t+ ∆t)) = ln[1 + |T (r(t+ ∆t))|]− ln[1− |T (r(t+ ∆t))|].

To arrive at an arc-length differential, we want to let ∆t approach 0. As this
happens, T (r(t + ∆t)) approaches T (r(t)), which is 0. From calculus we also
know that ln(1 + x) ≈ x for x very close to 0. Thus, for small ∆t, we have

dH(r(t), r(t+ ∆t)) ≈ |T (r(t+ ∆t))|+ |T (r(t+ ∆t))|

= 2 ·

∣∣∣∣∣ r(t+ ∆t)− r(t)
1− r(t)r(t+ ∆t)

∣∣∣∣∣
= 2 ·

∣∣∣r(t+∆t)−r(t)
∆t

∣∣∣
|1− r(t)r(t+ ∆t)|

· |∆t|.

Now, as ∆t → 0, the numerator in the above quotient goes to |r′(t)| and
the denominator goes to 1 − |r(t)|2, and we arrive at the following hyperbolic
arc-length differential.

Definition 5.3.6 If r : [a, b] → D is a smooth curve in the hyperbolic plane,
define the length of r, denoted L(r), to be

L(r) =
∫ b

a

2
1− |r(t)|2 |r

′(t)|dt.

♦
One can immediately check that the hyperbolic distance between two points

in D corresponds to the length of the hyperbolic line segment connecting them.

Theorem 5.3.7 The arc-length defined above is an invariant of hyperbolic geome-
try. That is, if r is a smooth curve in D, and T is any transformation in H, then
L(r) = L(T (r)).

The proof of this theorem is left as an exercise. One can prove that hyperbolic
reflections preserve arc-length as well. This should come as no surprise, given



SECTION 5.3. MEASUREMENT IN HYPERBOLIC GEOMETRY 97

the construction of the distance formula at the start of this section. Still, one
can prove this fact from our definition of arc-length (Exercise 5.3.6). Thus, all
hyperbolic reflections and all transformations in H are hyperbolic isometries:
they preserve the hyperbolic distance between points in D.

Another consequence of the invariance of distance, when applied to hyperbolic
rotations, is the following:

Corollary 5.3.8 All points on a hyperbolic circle centered at p are equidistant
from p.

Proof. Suppose u and v are on the same hyperbolic circle centered at
p. That is, these points are on the same type II cline with respect to p and
p∗, so there exists a hyperbolic rotation that fixes p and maps u to v. Thus,
dH(p, u) = dH(T (p), T (u)) = dH(p, v). It follows that any two points on the
hyperbolic circle centered at p are equidistant from p. �

We are now in a position to argue that in the hyperbolic plane, the shortest
path (geodesic) connecting two points p and q is along the hyperbolic line through
them.
Theorem 5.3.9 Hyperbolic lines are geodesics; that is, the shortest path between
two points in (D,H) is along the hyperbolic segment between them.

Proof Sketch: We first argue that the geodesic from 0 to a point c on the
positive real axis is the real axis itself.

Suppose r(t) = x(t) + iy(t) for a ≤ t ≤ b, is an arbitrary smooth curve from 0
to c (so r(a) = 0 and r(b) = c).

Suppose further that x(t) is nondecreasing (if our path backtracks in the x
direction, we claim the path cannot possibly be a geodesic). Then

L(r) =
∫ b

a

2
1− [(x(t))2 + (y(t))2]

√
(x′(t))2 + (y′(t))2 dt.

The hyperbolic line segment from 0 to c can be parameterized by r0(t) =
x(t) + 0i for a ≤ t ≤ b, which has length

L(r0) =
∫ b

a

2
1− [x(t)]2

√
(x′(t))2 dt.

The curve r0 is essentially the shadow of r on the real axis.
One can compare the integrands directly to see that L(r) ≥ L(r0).
Since transformations in H preserve arc-length and hyperbolic lines, it follows

that the shortest path between any two points in D is along the hyperbolic line
through them.

Corollary 5.3.10 The hyperbolic distance function is a metric on the hyperbolic
plane. In particular, for any points p, q, u in D

1. dH(p, q) ≥ 0, and dH(p, q) = 0 if and only if p = q;

2. dH(p, q) = dH(q, p); and

3. dH(p, q) + dH(q, u) ≥ dH(p, u).
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Proof. Recall our formula for the hyperbolic distance between two points in
Theorem 5.3.3:

dH(p, q) = ln
[
|1− pq|+ |q − p|
|1− pq| − |q − p|

]
.

This expression is always non-negative because the quotient inside the natural
log is always greater than or equal to 1. In fact, the expression equals 1 (so that
the distance equals 0) if and only if p = q.

Note further that this formula is symmetric. Interchanging p and q leaves the
distance unchanged.

Finally, the hyperbolic distance formula satisfies the triangle inequality because
hyperbolic lines are geodesics. �

Example 5.3.11 Two paths from p to q.

Two paths from p = .5i to q = .5 + .5i are shown below: the (solid)
hyperbolic segment from p to q, and the (dashed) path r that looks like a
Euclidean segment. Which path is shorter?

We may compute the length of the hyperbolic segment connecting p
and q with the distance formula from Theorem 5.3.3. This distance is
approximately 1.49 units.

By contrast, consider the path in D corresponding to the Euclidean
line segment from p to q. This path may be described by r(t) = t+ 1

2 i for
0 ≤ t ≤ 1

2 . Then r′(t) = 1 and

L(r) =
∫ 1

2

0

2
1− (t2 + 1

4 )
dt

≈ 1.52.

It is no surprise that the hyperbolic segment connecting p to q is a
shorter path in (D,H) than the Euclidean line segment connecting them.

r
p q

Example 5.3.12 Perpendicular bisectors in (D,H).

For any two points p and q in D, we may construct the perpendicular
bisector to hyperbolic segment pq by following the construction in Euclidean
geometry. Construct both the hyperbolic circle centered at p that goes
through q and the hyperbolic circle centered at q that goes through p. The
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hyperbolic line through the two points of intersection of these circles is the
perpendicular bisector to segment pq, labeled L in the following diagram.

Hyperbolic reflection about L maps p to q and q to p. Since hyperbolic
reflections preserve hyperbolic distances, each point on L is hyperbolic
equidistant from p and q. That is, for each z on L, dH(z, p) = dH(z, q).

p

qL

In Euclidean geometry one uses perpendicular bisectors to construct the
circle through three noncollinear points. This construction can break down in
hyperbolic geometry. Consider the three points p, q, and r in Figure 5.3.13. The
corresponding perpendicular bisectors do not intersect. There is no point in D
hyperbolic equidistant from all three of these points. In particular, in hyperbolic
geometry, there need not be a hyperbolic circle through three noncollinear points.

q

p

r

Lqr

Lpr

Lpq

Figure 5.3.13 Three noncollinear points need not determine a circle in hyperbolic
geometry.

Exercises
1. Suppose 0 < x < 1 and L is a hyperbolic line about which x gets inverted

to the origin. (Such an inversion was constructed in Theorem 5.1.3.) For a
real number h, let w be the image of x+ h under this inversion. Prove that
w = −h

1−x2−hx .

2. Determine a point in D whose hyperbolic distance from the origin is 2,003,007.4
units.
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3. Suppose L is any hyperbolic line, and C is any cline through the ideal points
of L. For any point z on L, its perpendicular distance to C is the length of
the hyperbolic segment from z to C that meets C at right angles. Prove that
the perpendicular distance from C to L is the same at every point of L. Hint:
Use the fact that distance is an invariant of hyperbolic geometry.

4. Determine the hyperbolic distance from the point p = 0.5 to the point
q = 0.25 + 0.5i.

5. Prove Theorem 5.3.7.
6. Hyperbolic reflections preserve distance in (D,H)

a. Use the definition of arc-length to prove that hyperbolic reflection about
the real axis preserves arc-length.

b. Use part (a) and Theorem 5.3.7 to argue that hyperbolic reflection about
any hyperbolic line preserves arc-length in (D,H).

7. Suppose z0 is in the hyperbolic plane and r > 0. Prove that the set C
consisting of all points z in D such that dH(z, z0) = r is a Euclidean circle.

5.4 Area and Triangle Trigonometry
The arc-length differential determines an area differential and the area of a region
will also be an invariant of hyperbolic geometry. The area of a region will not
change as it moves about the hyperbolic plane. We express the area formula in
terms of polar coordinates.

Definition 5.4.1 Suppose a region R in D is described in polar coordinates. The
area of R in (D,H), denoted A(R), is given by

A(R) =
∫∫

R

4r
(1− r2)2 drdθ.

♦
The integral in this formula is difficult to evaluate directly in all but the

simplest cases. Following is one such case.

Example 5.4.2 The area of a circle in (D,H).

Suppose our region is given by a circle whose hyperbolic radius is a. Since
area is an invariant, we may as well assume the circle is centered at the
origin. Let x be the point at which the circle intersects the positive real
axis (so 0 < x < 1), as pictured below. Then, by the distance formula

a = ln
(

1 + x

1− x

)
.
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a0 x

Solving for x, we have
x = ea − 1

ea + 1 .

This circular region may be described in polar coordinates by 0 ≤ θ ≤
2π and 0 ≤ r ≤ x. The area of the region is then given by the following
integral, which we compute with the u-substitution u = 1− r2:∫ 2π

0

∫ x

0

4r
(1− r2)2 drdθ

=
(∫ 2π

0
dθ

)(∫ 1−x2

1

−2
u2 du

)

= 2π
[

2
u

∣∣∣∣1−x2

1

]

= 2π
[

2
1− x2 − 2

]
= 4π x2

1− x2 .

Replace x in terms of a to obtain

4π (ea − 1)2

(ea + 1)2 ·
(ea + 1)2

(ea + 1)2 − (ea − 1)2 = 4π (ea − 1)2

4ea

= 4π
(
ea − 1
2ea/2

)2

= 4π
(
ea/2 − e−a/2

2

)2

.

This last expression can be rewritten using the hyperbolic sine function,
evaluated at a/2. We investigate the hyperbolic sine and cosine functions in the
exercises but note their definitions here.
Definition 5.4.3 The hyperbolic sine function, denoted sinh(x), and the
hyperbolic cosine function, denoted cosh(x), are functions of real numbers
defined by

sinh(x) = ex − e−x

2 and cosh(x) = ex + e−x

2 .

♦
The area derivation in Example 5.4.2 may then be summarized as follows.
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Theorem 5.4.4 The area of a hyperbolic circle with hyperbolic radius r is
4π sinh2(r/2).

Other regions are not as simple to describe in polar coordinates. An important
area for us will be the area of a 2

3 -ideal triangle, the figure that results if two
of the three vertices of a hyperbolic triangle are moved to ideal points. See
Figure 5.4.6.

Theorem 5.4.5 The area of a 2
3 -ideal triangle having interior angle α is equal to

π − α.
The proof of this theorem is given in the following section. The proof there

makes use of a different model for hyperbolic geometry, the so-called upper
half-plane model.

p

u

v

α

Figure 5.4.6 A 2
3 -ideal triangle having interior angle α has area equal to π − α.

An ideal triangle consists of three ideal points and the three hyperbolic lines
connecting them. It turns out that all ideal triangles are congruent (a fact proved
in the exercises); the set of all ideal triangles is minimally invariant in (D,H).

1−1

i

Figure 5.4.7 All ideal triangles are congruent to this one.

Theorem 5.4.8 Any ideal triangle has area equal to π.

Proof. Since all ideal triangles are congruent, assume our triangle ∆ is the
ideal triangle shown in Figure 5.4.7.

But then ∆ can be partitioned into two 2
3 -ideal triangles by drawing the

vertical hyperbolic line from 0 along the imaginary axis to ideal point i. Each
2
3 -ideal triangle has interior angle π/2, so ∆ has area π/2 + π/2 = π. �

It is a remarkable fact that π is an upper bound for the area of any triangle
in (D,H). No triangle in (D,H) can have area as large as π, even though side
lengths can be arbitrarily large!
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Theorem 5.4.9 The area of a hyperbolic triangle in (D,H) having interior angles
α, β, and γ is

A = π − (α+ β + γ).
u

v

q

t

p

r

γ

β
α

R1

R2

R3

Figure 5.4.10 Determining the area of a hyperbolic triangle.

Proof. Consider Figure 5.4.10 containing triangle ∆pqr. We have extended
segment qp to the ideal point t, u is an ideal point of line rq, and v is an ideal
point of line pr. The area of the ideal triangle ∆tuv is π. Notice that regions R1,
R2, and R3 are all 2

3 -ideal triangles contained within the ideal triangle. Consider
R1, whose ideal points are u and t, and whose interior angle is ∠uqt. Since the
line through q and r has ideal point u, the interior angle of R1 is ∠uqt = π − β.
Similarly, R2 has interior angle π − α and R3 has interior angle π − γ.

Let R denote the triangle region ∆pqr whose area A(R) we want to compute.
We then have the following relationships among areas:

π = A(R) +A(R1) +A(R2) +A(R3)
= A(R) + [π − (π − α)] + [π − (π − β)] + [π − (π − γ)].

Solving for A(R),
A(R) = π − (α+ β + γ),

and this completes the proof. �

In Euclidean geometry trigonometric formulas relate the angles of a triangle
to its side lengths. There are hyperbolic trigonometric formulas as well.
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γ

β

α

a

b

c

Figure 5.4.11 Relating angles and lengths in a hyperbolic triangle.

Theorem 5.4.12 Suppose a hyperbolic triangle in D has angles α, β, and γ and
opposite hyperbolic side lengths a, b, c, as pictured in Figure 5.4.11. Then the
following laws hold.

a. First hyperbolic law of cosines.

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ).

b. Second hyperbolic law of cosines.

cosh(c) = cos(α) cos(β) + cos(γ)
sin(α) sin(β) .

c. Hyperbolic law of sines.

sinh(a)
sin(α) = sinh(b)

sin(β) = sinh(c)
sin(γ) .

The proofs of these laws are left as exercises for the interested reader. The
following result follows from the first hyperbolic law of cosines.

Corollary 5.4.13 Hyperbolic hypotenuse theorem. In a right hyperbolic
triangle with hyperbolic side lengths a and b, and hypotenuse c,

cosh(c) = cosh(a) cosh(b).
The second hyperbolic law of cosines also leads to an interesting result. In the

hyperbolic plane, if we find ourselves at point z, we may infer our distance c to a
point w by estimating a certain angle, called the angle of parallelism of z to the
line L through w that is perpendicular to segment zw. The following is a picture
of this scene:



SECTION 5.4. AREA AND TRIANGLE TRIGONOMETRY 105

cz

w

u

α

L

In this setting, ∆zwu is a 1
3 -ideal triangle, and the second hyperbolic law of

cosines applies with γ = 0 and β = π/2 to yield the following result.

Corollary 5.4.14 Suppose z and w are points in D, and L is a hyperbolic line
through w that is perpendicular to hyperbolic segment zw. Suppose further that u
is an ideal point of L. Let α = ∠wzu and c = dH(z, w). Then

cosh(c) = 1
sin(α) .

The angle of parallelism is pursued further in Section 7.4.

Example 5.4.15 Flying around in (D,H).

Suppose a two-dimensional ship is plopped down in D. What would the
pilot see? How would the ship move? How would the pilot describe the
world? Are all points equivalent in this world? Could the pilot figure out
whether the universe adheres to hyperbolic geometry as opposed to, say,
Euclidean geometry?

Recall what we know about hyperbolic geometry. First of all, any
two points in the hyperbolic plane are congruent, so the geometry is
homogeneous. The pilot could not distinguish between any two points,
geometrically.

Second, the shortest path between two points is the hyperbolic line
between them, so light would travel along these hyperbolic lines, assuming
light follows geodesics. The pilot’s line of sight would follow along these
lines, and the ship would move along these lines to fly as quickly as possible
from p to q, assuming no pesky asteroid fields block the path. To observe
a galaxy at point q from the point p (as in the diagram below), the pilot
would point a telescope in the direction of line L, the line along which the
light from the galaxy travels to reach the telescope.

With a well-defined metric, we can say more. The pilot will view the
hyperbolic plane as infinite and without boundary. In theory, the pilot
can make an orbit of arbitrary radius about an asteroid located anywhere
in the space.

To test for hyperbolic geometry, perhaps the pilot can turn to triangles.
The angles of a triangle in the hyperbolic plane sum to less than 180◦,
but only noticeably so for large enough triangles. In our disk model of
hyperbolic geometry, we can easily observe this angle deficiency. In the
figure below, triangle ∆zuw has angle sum about 130◦, and ∆pqr has
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angle sum of about 22◦! Whether an intrepid 2-D explorer could map out
such a large triangle depends on how much ground she could cover relative
to the size of her universe. We will have more to say about such things in
Chapters 7 and 8.

r

q

p
u

wz
L

a

a

a

a

p

q

0 x

xi

Figure 5.4.16 A journey that would trace a square in the Euclidean plane does
not get you home in (D,H).

Example 5.4.17 Hyperbolic squares?

Simply put, hyperbolic squares don’t exist. In fact, no four-sided figures
with four right angles exist, if we assume the sides are hyperbolic segments.
If such a figure existed, its angle sum would be 2π. But such a figure could
be divided along a diagonal into two triangles whose total angle sum must
then be 2π as well. This means that one of the triangles would have angle
sum at least π, which cannot happen.

On the other hand, there is no physical obstruction to a two-dimensional
explorer making the following journey in the hyperbolic plane: Starting at
a point such as p in Figure 5.4.16, head along a line in a certain direction
for a units, turn right (90◦) and proceed in a line for a more units, then
turn right again and proceed in a line a units, and then turn right one more
time and proceed in a line for a units. Let q denote the point at which the
explorer arrives at the end of this journey. In the Euclidean plane, q will
equal p, because the journey traces out a square built from line segments.
However, this is not the case in (D,H) (though if we connect p and q with
a hyperbolic line we obtain a geodesic pentagon with (at least) three right
angles!). In the exercises we investigate the distance between p and q as a
function of the length a.
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However, we can build a four-sided figure closely resembling a rectangle,
if we drop the requirement that the legs be hyperbolic line segments.

Through any point 0 < a < 1 on the positive real axis, we may construct
a hyperbolic line L1 through a that is perpendicular to the real axis. Also
construct a hyperbolic line L2 through −a that is perpendicular to the real
axis. Now pick a point z on L1 and construct the cline arc C1 through z, 1
and −1. Also construct the cline arc C2 through z, 1 and −1. This creates
a four sided figure, which we call a block. We claim that each angle in
the figure is right, and that opposite sides have equal length. Moreover,
z and a can be chosen so that all four sides have the same length. This
figure isn’t a rectangle, however, in the sense that not all four sides are
hyperbolic segments. The arcs C1 and C2 are not hyperbolic lines.

1−1

z

z

a−a

L1L2

C1

C2

Figure 5.4.18 Blocks in D: Four-sided, right-angled figures whose opposite sides
have equal length.

While squares don’t exist in the hyperbolic plane, we may build right-angled
regular polygons with more than four sides using hyperbolic line segments. In
fact, for each triple of positive real numbers (a, b, c) we may build a right-angled
hexagon in the hyperbolic plane with alternate side lengths a, b, and c. We
encourage the reader to work carefully through the construction of this hexagon
in the proof of Theorem 5.4.19. We use all our hyperbolic constructions to get
there.
Theorem 5.4.19 For any triple (a, b, c) of positive real numbers there exists a
right-angled hexagon in (D,H) with alternate side lengths a, b, and c. Moreover,
all right-angled hexagons with alternate side lengths a, b, and c are congruent.

Proof. We prove the existence of a right-angled hexagon with vertices
v0, v1, . . . , v5 such that dH(v0, v1) = a, dH(v2, v3) = b, and dH(v4, v5) = c.
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a
v1

v2

v3

v4
v5

v0

b

c

A

B

C

D

Figure 5.4.20 Building a right hexagon in the hyperbolic plane that has alternate
side lengths (a, b, c).

First, let v0 be the origin in the hyperbolic plane, and place v1 on the positive
real axis so that dH(v0, v1) = a. Note that

v1 = ea − 1
ea + 1 .

Next, construct the hyperbolic line A perpendicular to the real axis at the
point v1. This line is part of the cline that has diameter v1v

∗
1 .

Pick any point v2 on the line A. For the sake of argument, assume that v2 lies
above the real axis, as in Figure 5.4.20.

Next, construct the hyperbolic line B perpendicular to A at the point v2. This
line is part of the cline through v2 and v∗2 with center on the line tangent to A at
v2.

Next, construct the point v3 on line B that is a distance b away from v2. This
point is found by intersecting B with the hyperbolic circle centered at v2 with
radius b. (To construct this circle, we first find the scalar k so that the hyperbolic
distance between kv2 and v2 is b.)

Next, draw the perpendicular C to line B at v3.
Then construct the common perpendicular of C and the imaginary axis, call

this perpendicular D. We construct this common perpendicular as follows. First
find the two points p and q symmetric to both C and the imaginary axis (see
Theorem 3.2.16). The points p and q will live on the circle at infinity. The common
perpendicular of C and the imaginary axis will be the cline through p and q that
is also a hyperbolic line (i.e., orthogonal to the circle at infinity).

If C and the imaginary axis intersect, no such perpendicular exists (think
triangle angles), so drag v2 away from v1 until these lines do not intersect. Then
construct D as in the preceeding paragraph. Let v4 and v5 be the points of
intersection of D with C and the imaginary axis, respectively.

This construction gives us a right angled hexagon such that dH(v0, v1) = a
and dH(v2, v3) = b. We also want dH(v4, v5) = c. Notice that this last distance is
a function of the position of vertex v2 on line A. As v2 goes along A to v1 there
is a point beyond which D no longer exists, and as v2 goes along A to the circle
at infinity, the length of segment v4v5 takes on all positive real values. So, by
the intermediate value theorem, there is some point at which the segment has
length c. Finally, all right-angled hexagons with alternate side lengths a, b, and c
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are congruent to the one just constructed because angles, hyperbolic lines, and
distances are preserved under transformations in H. �

Example 5.4.21 Inscribe a circle in an ideal triangle.

We show that if one inscribes a circle in any ideal triangle, its points of
tangency form an equilateral triangle with side lengths equal to 2 ln(ϕ)
where ϕ is the golden ratio (1 +

√
5)/2.

Since all ideal triangles are congruent, we choose one that is convenient
to work with. Consider the ideal triangle with ideal points -1, 1, and i.

The hyperbolic line L1 joining -1 and i is part of the circle C1 with
radius 1 centered at −1 + i. The hyperbolic line L2 joining i and 1 is part
of the circle C2 with radius 1 centered at 1 + i. Let C denote the circle
with radius 2 centered at −1 + 2i, as pictured below.

c

1

q

−1

p

i

0

−1 + i 1 + i

−1 + 2i

C1 C2

C

L1 L2

Inversion about C gives a hyperbolic reflection of D that maps L1 onto
the real axis. Indeed, the circle C1, since it passes through the center of
C, gets mapped to a line - the real axis, in fact. Moreover, hyperbolic
reflection across the imaginary axis maps L1 onto L2. Let c be the point
of intersection of these two hyperbolic lines of reflection, as pictured. The
hyperbolic circle with hyperbolic center c that passes through the origin
will be tangent to the real axis, and will thus inscribe the ideal triangle.
Let the points of tangency on L1 and L2 be p and q, respectively.

The point q can be found analytically as the point of intersection of
circles C and C2. Working it out, one finds q = 1

5 + 2
5 i. Thus,

dH(0, q) = ln
(

1 + |q|
1− |q|

)
= ln

(1 + 1√
5

1− 1√
5

)

= ln
(√

5 + 1√
5− 1

)
= ln

(
(
√

5 + 1)2

(
√

5− 1)(
√

5 + 1)

)
= ln

(
(
√

5 + 1)2

4

)
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= ln(ϕ2)
= 2 ln(ϕ).

Exercises

1. Properties of sinh(x) = (ex − e−x)/2 and cosh(x) = (ex + e−x)/2.
a. Verify that sinh(0) = 0 and cosh(0) = 1.

b. Verify that d
dx [sinh(x)] = cosh(x) and d

dx [cosh(x)] = sinh(x).

c. Verify that cosh2(x)− sinh2(x) = 1.

d. Verify that the power series expansions for cosh(x) and sinh(x) are

cosh(x) = 1 + x2

2 + x4

4! + · · ·

sinh(x) = x+ x3

3! + x5

5! + · · · .

2. Prove that the circumference of a hyperbolic circle having hyperbolic radius r
is C = 2π sinh(r).

3. The hyperbolic plane looks Euclidean on small scales.
a. Prove

lim
r→0+

4π sinh2(r/2)
πr2 = 1.

Thus, for small r, the Euclidean formula for the area of a circle is a good
approximation to the true area of a circle in the hyperbolic plane.

b. Prove
lim
r→0+

2π sinh(r)
2πr = 1.

Thus, for small r, the Euclidean formula for the circumference of a circle
is a good approximation to the true circumference of a circle in the
hyperbolic plane.

4. Prove that all ideal triangles are congruent in hyperbolic geometry.

5. An intrepid tax collector lives in a country in the hyperbolic plane. For
collection purposes, the country is divided into triangular grids. The collector
is responsible for collection in a triangle having angles 12◦, 32◦, and 17◦. What
is the area of the collector’s triangle? Can the entire space D be subdivided
into a finite number of triangles?

6. Consider the hyperbolic triangle with vertices at 0, 1
2 , and

1
2 + 1

2 i. Calculate
the area of this triangle by determining the angle at each vertex.

7. Recall the block constructed in Example 5.4.17. Prove that all four angles are
90◦, and that for any choice of z, opposite sides have equal hyperbolic length.

8. Find a formula for the area of an n-gon, comprised of n hyperbolic line
segments in terms of its n interior angles α1, α2, · · · , αn. Hint: Decompose
the n-gon into triangles.
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9. Building a hyperbolic octagon with interior angles 45◦. Let r be a real number
such that 0 < r < 1. The eight points vk = rei

π
4 k for k = 0, 1, · · · , 7 determine

a regular octagon in the hyperbolic plane, as shown in Figure 5.4.22. Note
that v0 is the real number r. The interior angle of each corner is a function of
r. We find the value of r for which the interior angle is 45◦.

a. Prove that the center of the circle containing the hyperbolic line through
v0 and v1 is

z0 = 1 + r2

2r + 1 + r2

2r tan(π/8)i.

b. Let b = 1+r2

2r be the midpoint of segment v0v
∗
0 and show that ∠v0z0b =

π/8 precisely when the interior angles of the octagon equal π/4.

c. Using ∆v0bz0 and part (b), show that the interior angles of the octagon
equal π/4 precisely when

tan(π/8) = |b− v0|
|z0 − b|

=
1+r2

2r − r
1+r2

2r · tan(π/8)
.

d. Solve the equation in (c) for r to obtain r = (1/2)(1/4).

b v∗o
v0

v1

v2

v3

v4

v5
v6

v7

z0

Figure 5.4.22 Building an octagon with interior angles equal to 45◦.
10. Suppose we construct a regular n-gon in the hyperbolic plane from the

corner points r, re 1
n 2πi, re

2
n 2πi, · · · , ren−1

n 2πi where 0 < r < 1. Calculate the
hyperbolic length of any of its sides.

11. Prove the first hyperbolic law of cosines by completing the following steps.
a. Show that for any positive real numbers x and y,

cosh(ln(x/y)) = x2 + y2

2xy and sinh(ln(x/y)) = x2 − y2

2xy .

b. Given two points p and q in D, let c = dH(p, q). Use the hyperbolic
distance formula from Theorem 5.3.3 and part (a) to show

cosh(c) = (1 + |p|2)(1 + |q|2)− 4Re(pq)
(1− |p|2)(1− |q|2) .

c. Now suppose our triangle has one vertex at the origin, and one point
on the positive real axis. In particular, suppose p = r (0 < r < 1) and
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q = keiγ (0 < k < 1), with angles α, β, γ and hyperbolic side lengths
a, b, and c as in Figure 5.4.23.

0 p

q

γ

αb

a
β

c

1

Figure 5.4.23 A hyperbolic triangle with one corner at the origin and
one leg on the positive real axis.

Show
cosh(a) = 1 + r2

1− r2 ; sinh(a) = 2r
1− r2 ;

cosh(b) = 1 + k2

1− k2 ; sinh(b) = 2k
1− k2 .

d. Show that for the triangle in part (c),

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ).

e. Explain why this formula works for any triangle in D.

12. In this exercise we prove the hyperbolic law of sines. We assume our triangle
is as in Figure 5.4.24. Thus, q = keiγ for some 0 < k < 1 and p = r for some
real number 0 < r < 1. Suppose further that the circle containing side c
has center z0 and Euclidean radius R, shown in the figure, and that mq is
the midpoint of segment qq∗ and mp is the midpoint of segment pp∗, so that
∆z0mqq and ∆pmpz0 are right triangles.

0 p

q

q∗

p∗
γ

α

α

β

β

c

a

b

mp

mq

z0

R

R

Figure 5.4.24 Deriving the hyperbolic law of sines.

a. Verify that the triangle angles α and β correspond to angles ∠mqz0q
and ∠pz0mp, respectively.

b. Notice that sin(α) = |mq − q|/R and sin(β) = |mp − p|/R. Verify that
|mq − q| = 1/k−k

2 = 1−k2

2k and that |mp − p| = 1−r2

2r .
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c. Verify that
sinh(a)
sin(α) = sinh(b)

sin(β) .

d. Explain why we may conclude that for any hyperbolic triangle in D,

sinh(a)
sin(α) = sinh(b)

sin(β) = sinh(c)
sin(γ) .

13. Prove the second law of hyperbolic cosines.

14. Recall the journey in Example 5.4.17 in which a bug travels a path that
would trace a square in the Euclidean plane. For convenience, we assume the
starting point p is such that the first right turn of 90◦ occurs at the point
x on the positive real axis and the second turn occurs at the origin. (This
means that x = (ea − 1)/(ea + 1).) The third corner must then occur at xi.
We have reproduced the journey with some more detail in Figure 5.4.25. In
this exercise we make use of hyperbolic triangle trig to measure some features
of this journey from p to q in terms of the length a of each leg.

a. Determine the hyperbolic distance between p and the origin (corner
two of the journey). In particular, show that cosh(dH(0, p)) = cosh2(a).
Note that if this journey had been done in the Euclidean plane, the
corresponding distance would be

√
2a. How do these distances compare

for small positive values of a? Is cosh2(a) close to cosh(
√

2a)?

b. Let θ = ∠x0p. Show that tan(θ) = 1
cosh(a) . What is the corresponding

angle if this journey is done in the Euclidean plane? What does θ
approach as a→ 0+?

c. Show that ∠x0p = ∠0px.

d. Show that cosh(dH(p, q)) = cosh4(a)[1− sin(2θ)] + sin(2θ).

e. Let α = ∠qp0, b = dH(0, p) and c = dH(p, q). Show that

sin(α) = sinh(b)
sinh(c) cos(2θ).

f. Determine the area of the pentagon enclosed by the journey if, after
reaching q we return to p along the geodesic. In particular, show that the
area of this pentagon equals 3π

2 − 2(θ + α). What is the corresponding
area if the journey had been done in the Euclidean plane?

g. Would any of these measurements change if we began at a different
point in the hyperbolic plane and/or headed off in a different direction
initially than the ones in Figure 5.4.25?
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c

a

a

a
b

a

p

q

0 θ

α

x

xi

Figure 5.4.25 A journey that would trace a square in the Euclidean plane does
not get you home in (D,H). But how close will the finish point q be to the starting
point p?

5.5 The Upper Half-Plane Model
The Poincaré disk model is one way to represent hyperbolic geometry, and for
most purposes it serves us very well. However, another model, called the upper
half-plane model, makes some computations easier, including the calculation of
the area of a triangle.

Definition 5.5.1 The upper half-plane model of hyperbolic geometry
has space U consisting of all complex numbers z such that Im(z) > 0, and
transformation group U consisting of all Möbius transformations that send U to
itself. The space U is called the upper half-plane of C. ♦

The Poincaré disk model of hyperbolic geometry may be transferred to the
upper half-plane model via a Möbius transformation built from two inversions as
follows:

1. Invert about the circle C centered at i passing through -1 and 1 as in
Figure 5.5.2.

2. Reflect about the real axis.

i

−1 1

C

Figure 5.5.2 Inversion in C maps the unit disk to the upper-half plane.
Notice that inversion about the circle C fixes -1 and 1, and it takes i to ∞.

Since reflection across the real axis leaves these image points fixed, the composition
of the two inversions is a Möbius transformation that takes the unit circle to
the real axis. The map also sends the interior of the disk into the upper half
plane. Notice further that the Möbius transformation takes ∞ to −i; therefore,
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by Theorem 3.5.8, the map can be written as

V (z) = −iz + 1
z − i

.

This Möbius transformation is the key to transferring the disk model of the
hyperbolic plane to the upper half-plane model. In fact, when treading back and
forth between these models it is convenient to adopt the following convention
for this section: Let z denote a point in D, and w denote a point in the upper
half-plane U, as in Figure 5.5.3. We record the transformations linking the spaces
below.

Going between (D,H) and (U,U).

The Möbius transformation V mapping D to U, and its inverse V −1, are
given by:

w = V (z) = −iz + 1
z − i

and z = V −1(w) = iw + 1
w + i

.

Some features of the upper half-plane model immediately come to light. Since
V is a Möbius transformation, it preserves clines and angles. This means that
the ideal points in the disk model, namely the points on the circle at infinity,
S1
∞, have moved to the real axis and that hyperbolic lines in the disk model have

become clines that intersect the real axis at right angles.

z

S1
∞

w

real axis

V

V −1

Figure 5.5.3 Mapping the disk to the upper half-plane.
Define the hyperbolic distance between two points w1, w2 in the upper half-

plane model, denoted dU (w1, w2), to be the hyperbolic distance between their
pre-images in the disk model.

Suppose w1 and w2 are two points in V whose pre-images in the unit disk are
z1 and z2, respectively. Then,

dU (w1, w2) = dH(z1, z2) = ln((z1, z2;u, v)),

where u and v are the ideal points of the hyperbolic line through z1 and z2. But,
since the cross ratio is preserved under Möbius transformations,

dU (w1, w2) = ln((w1, w2; p, q)),

where p, q are the ideal points of the hyperbolic line in the upper half-plane
through w1 and w2. In particular, going from w1 to w2 we’re heading toward
ideal point p.
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Example 5.5.4 The distance between ri and si.

For r > s > 0 we compute the distance between ri and si in the upper
half-plane model.

The hyperbolic line through ri and si is the positive imaginary axis,
having ideal points 0 and ∞. Thus,

dU (ri, si) = ln((ri, si; 0,∞))

= ri− 0
ri−∞

· si−∞
si− 0

= ln
(r
s

)
.

Example 5.5.5 The distance between any two points.

To find the distance between any two points w1 and w2 in U, we first build
a map in the upper half-plane model that moves these two points to the
positive imaginary axis. To build this map, we work through the Poincaré
disk model.

By the transformation V −1 we send w1 and w2 back to D. We let
z1 = V −1(w1) and z2 = V −1(w2). Then, let S(z) = eiθ z−z1

1−z1z
be the

transformation in (D,H) that sends z1 to 0 with θ chosen carefully so
that z2 gets sent to the positive imaginary axis. In fact, z2 gets sent to
the point ki where k = |S(z2)| = |S(V −1(w2))| (and 0 < k < 1). Then,
applying V to the situation, 0 gets sent to i and ki gets sent to 1+k

1−k i. Thus,
V ◦ S ◦ V −1 sends w1 to i and w2 to 1+k

1−k i, where by the previous example
the distance between the points is known:

dU (w1, w2) = ln(1 + k)− ln(1− k).

Describing k in terms of w1 and w2 is left for the adventurous reader.
We do not need to pursue that here.

We now derive the hyperbolic arc-length differential for the upper half-plane
model working once again through the disk model. Recall the arc-length differential
in the disk model is

ds = 2|dz|
1− |z|2 .

Since z = V −1(w) = iw+1
w+i we may work out the arc-length differential in terms

of dw. We will need to take the derivative of a complex expression, which can be
done just as if it were a real valued expression. Here we go:

ds = 2|dz|
1− |z|2

=
2|d
(
iw+1
w+i

)
|

1−
∣∣∣∣ iw+1
w+i

∣∣∣∣2
(z = iw+1

w+i )
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= 2|i(w + i)dw − (iw + 1)dw|
|w + i|2

/[
1− |iw + 1|2

|w + i|2

]
(chain rule)

= 4|dw|
|w + i|2 − |iw + 1|2

= 4|dw|
(w + i)(w − i)− (iw + 1)(−iw + 1)

= 4|dw|
2i(w − w)

= |dw|
Im(w) .

This leads us to the following definition:

Definition 5.5.6 The length of a smooth curve r(t) for a ≤ t ≤ b in the upper
half-plane model (U,U), denoted L(r), is given by

L(r) =
∫ b

a

|r′(t)|
Im(r(t)) dt.

♦

Example 5.5.7 The length of a curve.

To find the length of the horizontal curve r(t) = t+ ki for a ≤ t ≤ b, note
that r′(t) = 1 and Im(r(t)) = k. Thus,

L(r) =
∫ b

a

1
k
dt = b− a

k
.

From the arc-length differential ds = dw
Im(w) comes the area differential:

Definition 5.5.8 In the upper half-plane model (U,U) of hyperbolic geometry,
the area of a region R described in cartesian coordinates, denoted A(R), is given
by

A(R) =
∫∫

R

1
y2 dxdy.

♦

Example 5.5.9 The area of a 2
3 -ideal triangle.

Suppose w ∈ U is on the unit circle, and consider the 2
3 -ideal triangle 1w∞

as pictured.
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1

w

π − α

α

In particular, suppose the interior angle at w is α, so that w = ei(π−α)

where 0 < α < π.
The area of this 2

3 -ideal triangle is thus

A =
∫ 1

cos(π−α)

∫ ∞
√

1−x2

1
y2 dydx

=
∫ 1

cos(π−α)

1√
1− x2

dx.

With the trig substituion cos(θ) = x, so that
√

1− x2 = sin(θ) and
− sin(θ)dθ = dx, the integral becomes

=
∫ 0

π−α

− sin(θ)
sin(θ) dθ

= π − α.

It turns out that any 2
3 -ideal triangle is congruent to one of the form 1w∞

where w is on the upper half of the unit circle (Exercise 5.5.3), and since our
transformations preserve angles and area, we have proved the area formula for a
2
3 -ideal triangle.

Theorem 5.5.10 The area of a 2
3 -ideal triangle having interior angle α is equal

to π − α.

Exercises
1. What becomes of horocycles when we transfer the disk model of hyperbolic

geometry to the upper half-plane model?

2. What do hyperbolic rotations in the disk model look like over in the upper
half-plane model? What about hyperbolic translations?

3. Give an explicit description of a transformation that takes an arbitrary 2
3 -ideal

triangle in the upper half-plane to one with ideal points 1 and ∞ and an
interior vertex on the upper half of the unit circle.
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4. Determine the area of the “triangular” region pictured below. What is the
image of this region under V −1 in the disk model of hyperbolic geometry?
Why doesn’t this result contradict Theorem 5.4.9?

1 + ii

1 + 2i

5. Another type of block. Consider the four-sided figure pqst in (D,H) shown
in the following diagram. This figure is determined by two horocycles C1
and C2, and two hyperbolic lines L1 and L2 all sharing the same ideal point.
Note that the lines are orthogonal to the horocycles, so that each angle in the
four-sided figure is 90◦.

a. By rotation about the origin if necessary, assume the common ideal point
is i and use the map V to transfer the figure to the upper half-plane.
What does the transferred figure look like in U? Answer parts (b)-(d)
by using this transferred version of the figure.

b. Prove that the hyperbolic lengths of sides pq and st are equal.

c. Let c equal the hyperbolic length of the leg pt along the larger radius
horocycle C1, and let d equal the hyperbolic length of the leg sq on C2.
Show that c = exd where x is the common length found in part (b).

d. Prove that the area of the four-sided figure is c− d.

u

L2

L1

p

t

q

s

C1

C2
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6

Elliptic Geometry

Elliptic geometry is the second type of non-Euclidean geometry that might describe
the geometry of the universe. In this chapter we focus our attention on two-
dimensional elliptic geometry, and the sphere will be our guide. The chapter
begins with a review of stereographic projection, and how this map is used to
transfer information about the sphere onto the extended plane. We develop elliptic
geometry in Sections 6.2 and 6.3, and then pause our story in Section 6.4 to reflect
on what we have established, geometry-wise, before moving on to geometry on
surfaces in Chapter 7.

6.1 Antipodal Points

Recall, the unit 2-sphere S2 consists of all points (a, b, c) in R3 for which a2 +
b2 + c2 = 1, and S2 may be mapped onto the extended plane by the stereographic
projection map φ : S2 → C+ defined by

φ(a, b, c) =
{

a
1−c + b

1−c i if c 6= 1;
∞ if c = 1

.

Two distinct points on a sphere are called diametrically opposed points if
they are on the same line through the center of the sphere. Diametrically opposed
points on the sphere are also called antipodal points. If P = (a, b, c) is on S2 then
the point diametrically opposed to it is −P = (−a,−b,−c). It turns out that φ
maps diametrically opposed points of the sphere to points in the extended plane
that satisfy a particular equation.

Definition 6.1.1 Two points z and w in C+ are called antipodal points if they
satisfy the equation

z · w = −1.

Furthermore, we set 0 and ∞ to be antipodal points in C+. If z and w are
antipodal points, we say w is antipodal to z, and vice versa. ♦

121
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Each z in C+ has a unique antipodal point, za, given as follows:

za =


−1/z if z 6= 0,∞;
∞ if z = 0;
0 if z =∞

.

Since − 1
z = − 1

|z|2 z, we note that za is a scaled version of z, so that z and za
live on the same Euclidean line through the origin. Again, since 0 and ∞ are
antipodal points, this notion extends to all points z ∈ C+.

Lemma 6.1.2 Given two diametrically opposed points on the unit sphere, their
image points under stereographic projection are antipodal points in C+.

Proof. First note that the north pole N = (0, 0, 1) and the south pole
S = (0, 0,−1) are diametrically opposed points and they get sent by φ to ∞ and
0, respectively, in C+; so the lemma holds in this case.

Now suppose P = (a, b, c) is a point on the sphere with |c| 6= 1, and Q =
(−a,−b,−c) is diametrically opposed to P . The images of these two points under
stereographic projection are

φ(P ) = a

1− c + b

1− c i and φ(Q) = −a
1 + c

− b

1 + c
i.

If we expand the following product

φ(P ) · φ(Q) =
[

a

1− c + b

1− c i
]
·
[
−a

1 + c
+ b

1 + c
i

]
,

we obtain
φ(P ) · φ(Q) = −a

2 + b2

1− c2

which reduces to −1 since a2 + b2 + c2 = 1.
Thus, diametrically opposed points on the sphere get mapped via stereographic

projection to antipodal points in the extended plane. �

A cline C in C+ is called a great circle if whenever z is on C, so is its
antipodal point za. Some great circles are drawn in Figure 6.1.3. We note that
the unit circle is a great circle in C+ as is any line through the origin.

z

za

w

wa

10

Figure 6.1.3 Five great circles in C+.
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To construct a great circle in the extended plane, it is enough to ensure that
it passes through one particular pair of antipodal points. This can be proved
with the aid of stereographic projection, but an alternative proof is given below,
one that does not leave the plane, but rather uses a proposition from Book III of
Euclid’s Elements.
Lemma 6.1.4 If a cline in C+ contains two antipodal points then it is a great
circle.

Proof. Suppose C is a cline in C+ containing antipodal points p and pa, and
suppose q is any other point on C. We show qa is also on C.

If C is a line, it must go through the origin since p and pa are on the same line
through the origin. Since q and qa are also on the same line through the origin, if
q is on C then qa is too.

If C is a circle, then the origin of the plane is in the interior of C and the
chord ppa contains the origin, as pictured in Figure 6.1.5. The line through q and
the origin intersects C at another point, say w. We show w = qa.

p

pa

q

w

0

C

Figure 6.1.5 A cline C containing a pair of antipodal points p and pa must be a
great cirlce. In the figure, w = qa.

The intersecting chords theorem (Book III, Proposition 35 of Euclid’s Elements)
applied to this figure tells us that |p| · |pa| = |q| · |w|. (We leave the proof to
Exercise 6.1.7. The proof essentially follows that of Lemma 3.2.7, except we
consider a point inside the given circle.) As antipodal points, |p| · |pa| = 1, and it
follows that |w| = 1/|q|. Since the segment wq contains the origin, it follows that
w is the point antipodal to q. �

The following theorem tells us that inversions will play a central role in elliptic
geometry, just as they do in hyperbolic geometry.

Theorem 6.1.6 Reflection of S2 about a great circle corresponds via stereographic
projection to inversion about a great circle in C+.

We work through the relationship in one case, and refer the interested reader
to [10] for the general proof.
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Example 6.1.7 Reflection of S2 about the equator.

We argue that reflection of S2 about the equator corresponds to inversion
about the unit circle.

First of all, stereographic projection sends the equator of S2 to the
unit circle in C+. Now, reflection of S2 across the equator sends the point
P = (a, b, c) to the point P ∗ = (a, b,−c). We must argue that φ(P ) and
φ(P ∗) are symmetric with respect to the unit circle.

If |c| = 1 then P and P ∗ correspond to the north and south poles,
and their image points are 0 and ∞, and these points are symmetric with
respect to the unit circle. So, assume |c| 6= 1. Notice that

φ(P ) = a

1− c + b

1− c i and φ(P ∗) = a

1 + c
+ b

1 + c
i

are on the same ray beginning at the origin. Indeed, one is the positive
scalar multiple of the other:

φ(P ∗) = 1− c
1 + c

φ(P ).

Moreover,

|φ(P )| · |φ(P ∗)| = 1− c
1 + c

· |φ(P )|2

= 1− c
1 + c

· a
2 + b2

(1− c)2

= a2 + b2

1− c2
= 1.

Again, the last equality holds because a2 + b2 + c2 = 1. Thus, φ(P )
and φ(P ∗) are symmetric with respect to the unit circle. It follows that
inversion in the unit circle, iS1 , corresponds to reflection of S2 across the
equator, call this map R, by the equation

iS1 ◦ φ = φ ◦R.

We end the section with one more feature of the stereographic projection map.
The proof can be found in [10].

Theorem 6.1.8 The image of a circle on S2 via stereographic projection is a
cline in C+. Moreover, the pre-image of a circle in C+ is a circle on S2. The
pre-image of a line in C+ is a circle on S2 that goes through N = (0, 0, 1).

In fact, one can offer a constructive proof of this theorem. A circle on S2 can
be represented as the intersection of S2 with a plane Ax+By + Cz +D = 0 in
3-dimensional space. One can show that the circle in S2 defined by Ax+By+Cz+
D = 0 gets mapped by φ to the cline (C+D)(u2 +v2)+2Au+2Bv+(D−C) = 0
in the plane (described via u, v cartesian coordinates); conversely the circle
|w − w0| = r in C gets mapped by the inverse function φ−1 to the circle in S2
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given by the plane −2x0x− 2yoy + (1− |w0|2 + r2)z + (1 + |w0|2 − r2) = 0 where
w0 = x0 + y0i.

Example 6.1.9 The image of a circle under φ.

Consider the circle on S2 defined by the vertical plane x = − 1
2 . In standard

form, this plane has constants A = 2, B = C = 0, and D = 1, so the image
under φ is the circle

(u2 + v2) + 4u+ 1 = 0.

Completing the square we obtain the circle

(u+ 2)2 + v2 = 3

having center (−2, 0) and radius
√

3.

Example 6.1.10 The pre-image of a circle under φ.

The pre-image of the circle |w − (3 + 2i)| = 4 in C is the circle on S2

defined by the plane

−2 · 3x− 2 · 2y + (1− 13 + 4)z + (1 + 13− 4) = 0

or
−3x− 2y − 4z + 5 = 0.

Exercises
1. Constructing an antipodal point. Suppose z is a point inside the unit circle.

Prove that the following construction, which is depicted in Figure 6.1.11, gives
za, the point antipodal to z: (1) Draw the line through z and the origin; (2)
draw the line through the origin perpendicular to line (1), and let T be on
line (2) and the unit circle; (3) construct the segment zT ; (4) construct the
perpendicular to segment (3) at point T . Line (4) intersects line (1) at the
point za. Use similar triangles to prove that za = − 1

|z|2 z.

(1)

(2)

z

T

0 (3)

(4)
za

Figure 6.1.11 Constructing the antipodal point to z.
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2. Explain why any great circle in C+ either contains 0 or has 0 in its interior.

3. Characterize those great circles in C+ that are actually Euclidean lines.

4. Prove that reflection of S2 across the great circle through (0, 0, 1), (0, 0,−1),
and (1, 0, 0) corresponds via stereographic projection to reflection of C+ across
the real axis.

5. Determine the image under φ of the circle z = 1/2 on the unit sphere.

6. Explain why reflection of S2 across any longitudinal great circle (i.e. a great
circle through the north and south poles) corresponds to reflection of C+

across a line through the origin.

7. Prove the intersecting chords theorem in two parts.
a. Suppose C is a circle with radius r centered at o. Suppose p is a point

inside C and a line through p intersects C at points m and n, as pictured
below. If we let s = |p− o| prove that |p−m| · |p− n| = r2 − s2.

s r

o

p
n

m

C

b. Prove the intersecting chords theorem: If mn and ab are any two chords
of C passing through a given interior point p, then

|m− p| · |a− p| = |m− p| · |b− p|.

6.2 Elliptic Geometry
As was the case in hyperbolic geometry, the space in elliptic geometry is de-
rived from C+, and the group of transformations consists of certain Möbius
transformations. We first consider the transformations.
Definition 6.2.1 Let S consist of all Möbius transformations T that preserve
antipodal points. In other words, S consists of all Möbius transformations T with
the property that if z and za are antipodal points in C+ then T (z) and T (za) are
antipodal points in C+. ♦

We leave it to the reader to verify that S actually forms a group. Considering
the antipodal point construction in Figure 6.1.11, it seems clear that rotation of
C+ about the origin should preserve antipodal points. So, these rotations should
be in S. Let’s run through this.
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Example 6.2.2 Rotations about 0 are in S.

Suppose R(z) = eiθz is a rotation about the origin and z and za are
antipodal points. If z =∞ or 0, then rotation about the origin fixes z, and
it also fixes its antipodal point, so the map R preserves antipodal points in
these cases. Now suppose z 6= 0,∞. Then za = − 1

z . Since R(za) = − e
−iθ

z ,
it follows that

R(z) ·R(za) = −eiθz · e
−iθ

z
= −1.

Thus, the image points R(z) and R(za) are still antipodal points.
Rotations about the origin belong to the group S.

Now we consider what a typical transformation in S looks like.
Suppose the Möbius transformation T is in S, and that z and w are antipodal

points. Then T (z) · T (w) = −1. Since z and w are antipodal points, w = − 1
z , so

T (z) · T (−1/z̄) = −1, or

T (z) = −1
T (−1/z̄)

. (1)

Assume T (z) = (az + b)/(cz + d), and that it has determinant ad − bc = 1.
(Recall, from Exercise 3.4.4 that we can always write a Möbius transformation in
a form with determinant 1, and this form is unique up to sign.) Now,

T (−1/z̄) =
[
−a/z̄ + b

−c/z̄ + d

]
= −ā/z + b̄

−c̄/z + d̄

= b̄z − ā
d̄z − c̄

.

Substituting into equation (1) of this derivation yields

az + b

cz + d
= −d̄z + c̄

b̄z − ā
.

The transformation on the right also has determinant one, so these two
transformations are identical up to sign. We can assume that d = −ā and that
c = b̄, so that T may be expressed as follows:

T (z) = az + b

b̄z − ā
.

We can make this general form look a lot like the general form for a transfor-
mation in H. To do so, first multiply each term by −1/ā, assuming a 6= 0. (If
a = 0, what would the transformation look like?)

T (z) =
−aāz −

b
ā

− b̄
āz + 1

=
−aā (z + b

a )
− b̄
āz + 1
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= eiθ · z − z0

z0z + 1 ,

where eiθ = −a/ā and z0 = −b/a. Thus, we have derived the following algebraic
description of transformations in S.

Transformations in S.

Any transformation T in the group S has the form

T (z) = eiθ
z − z0

1 + z0z

for some angle θ and some z0 in C+.

One can show that the following converse holds: Any transformation having
the form above preserves antipodal points. It follows that for any point z0 ∈ C+,
there exists a transformation T in S such that T (z0) = 0, and since rotations about
the origin live in S we can prove the following useful result (see Exercise 6.2.1).

Lemma 6.2.3 Given distinct points z0 and z1 in C+, there exists a transformation
in S that sends z0 to 0 and z1 to the real axis.

We now prove a theorem that helps us visualize the maps in S.

Theorem 6.2.4 If a Möbius transformation preserves antipodal points, then it is
an elliptic Möbius transformation.

Proof. Suppose T is a Möbius transformation that preserves antipodal points.
If T is not the identity map then it must fix one or two points. However, if T
preserves antipodal points and fixes a point p, then it must fix its antipodal point
pa. Thus, T must have two fixed points and T has normal form

T (z)− p
T (z)− pa

= λ
z − p
z − pa

.

To show T is an elliptic Möbius transformation, we must show that |λ| = 1.
Setting z = 0 the normal form reduces to

T (0)− p
T (0)− pa

= λ
p

pa
.

Solve for T (0) to obtain

T (0) = ppa − λppa
pa − λp

.

On the other hand, setting z =∞ and solving for T (∞), one checks that

T (∞) = p− λpa
1− λ .

Since T preserves antipodal points, T (0) · T (∞) = −1; therefore, we have

ppa − λppa
pa − λp

· p− λpa
1− λ

= −1.

If we expand this expression and solve it for λλ (using the fact that p ·pa = −1,
and p 6= pa), we obtain λλ = 1, from which it follows that |λ| = 1. Thus T is an
elliptic Möbius transformation. �
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In Exercise 3.5.8 we showed that any elliptic Möbius transformation is the
composition of two inversions about clines that intersect at the two fixed points.
In the case of a Möbius transformation that preserves antipodal points, these
two fixed points must be antipodal to each other. It follows by Lemma 6.1.4
that the two clines of inversion are great circles in C+. Thus, we may view each
transformation of S as the composition of two inversions about great circles. This
is reassuring. By Theorem 6.1.6, these inversions correspond to reflections of the
sphere about great circles, and composing two of these reflections of the sphere
yields a rotation of the sphere. The transformation group S, then, consists of
Möbius transformations that correspond via stereographic projection to rotations
of the sphere. We summarize these facts below.

Theorem 6.2.5 Any transformation in S is the composition of two inversions
about great circles in C+, and it corresponds via stereographic projection to a
rotation of the unit 2-sphere.

Before turning to the space in elliptic geometry, we make one more comment
about the group S. The reader may have noticed a strong similarity, algebraically,
between the maps in S and the maps in H, the transformation group in hyperbolic
geometry. Recall, transformations in H have the form

T (z) = eiθ
z − z0

1− z0z
. (transformation in H)

The single sign difference between the algebraic desciption of maps in S from
the maps in H is not a coincidence. We could have defined the transformations in
hyperbolic geometry as those Möbius transformations that preserve symmetric
points with respect to the unit circle. That is, we could have defined the group H
to consist of all Möbius transformations satisfying this property: If z · w̄ = 1 then
T (z) · T (w) = 1. If we had then asked what such a T would look like, we would
have gone through the argument as we did in this section, with a +1 initially
instead of a -1. This sign difference propagates to the sign difference in the final
form of the description of the map.

The space for elliptic geometry
One could let the space be all of C+. If we take this tack, then we are reproducing
the geometry of the sphere in C+. We call the geometry (C+,S) spherical
geometry. Distance can be defined to match distance on the unit sphere, and
great cirlces in C+ will be geodesics. Rather than develop these details with this
choice of spaces, we will focus instead on a different space. We do so because
we want to build a geometry in which there is a unique line between any two
points. This is not quite true on the sphere, and so not quite true in (C+,S). If
two points in C+ are antipodal points, such as 0 and ∞, then there are infinitely
many lines (great circles) through these points.

So, we choose to work primarily with a space in which this feature of many
distinct lines through two points vanishes. The trick is to identify antipodal points.
That is, the space we will consider is actually the space C+ with antipodal points
identified. What does this space look like?

Remember the flat torus from Chapter 1? Each point on the boundary of the
rectangle is identified with the corresponding point on the opposite edge. The
two points are fused together into a single point.
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In elliptic space, every point gets fused together with another point, its
antipodal point. So, for instance, the point 2 + i gets identified with its antipodal
point − 2

5 −
i
5 . In elliptic space, these points are one and the same.

With the flat torus, we could visualize the space after identifying points by
wrapping it up in three-dimensional space. This was possible since we were only
identifying the edges of the rectangle. In the present case every point in C+ gets
paired up. To help visualize the space here we look at a region in the plane that
contains one representative from each pair.

Consider the closed unit disk, consisting of all complex numbers z such that
|z| ≤ 1. For each point w outside this disk, its antipodal point wa is inside the disk.
Thus, the closed unit disk contains a representative from each pair of antipodal
points. However, there is some redundancy: for a point w on the boundary of
the disk (|w| = 1), its antipodal point wa is also on the boundary. To account for
this redundancy, we identify each point on the boundary of the closed unit disk
with its antipodal point.

This will be our model for the space in elliptic geometry, and this space is
called the projective plane.

Definition 6.2.6 The projective plane, denoted P2, consists of all complex
numbers z such that |z| ≤ 1 with the additional feature that antipodal points on
the unit circle are identified. ♦

We can think of this space as the closed unit disk with its two edges (top-half
circle and bottom-half circle) identified according to the arrows in Figure 6.2.7.
Notice the pleasant journey a bug has taken from p to q in this figure. From p she
heads off toward point c, which appears on the boundary of our model. When
she arrives there she simply keeps walking, though in our model we see her leave
the “screen” and reappear at the antipodal point ca. She has her sights set on
point d and saunters down there, continues on (reappearing at da), and heads on
to q, hungry but content.

p

q

c

d

ca

da

Figure 6.2.7 A leisurely stroll from p to q in the projective plane P2.

Definition 6.2.8 The disk model for elliptic geometry, (P2,S), is the ge-
ometry whose space is P2 and whose group of transformations S consists of all
Möbius transformations that preserve antipodal points. ♦

Because the transformations of S are generated by inversions about great
circles, these circles ought to determine the lines in elliptic geometry.
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Definition 6.2.9 An elliptic line in (P2,S) is the portion of a great circle in
C+ that lives in the closed unit disk. ♦

Two elliptic lines have been constructed in Figure 6.2.10.

a

b

c

d

Figure 6.2.10 Elliptic lines go through antipodal points.

Theorem 6.2.11 There is a unique elliptic line connecting two points p and q in
P2.

Proof. Suppose p and q are distinct points in P2. This means q 6= pa as points
in C+. Construct the antipodal point pa, which gives us three distinct points in
C+: p, q and pa. There exists a unique cline through these three points. Since
this cline goes through p and pa, it is an elliptic line by Lemma 6.1.4. �

Note that elliptic lines through the origin are Euclidean lines, just as was the
case in the Poincaré model of hyperbolic geometry. As a result, to prove facts
about elliptic geometry, it can be convenient to transform a general picture to
the special case where the origin is involved.

Theorem 6.2.12 The set of elliptic lines is a minimally invariant set of elliptic
geometry.

Proof. By definition, any transformation T in S preserves antipodal points.
Thus, if L is an elliptic line, then T (L) is as well, and the set of elliptic lines is an
invariant set of elliptic geometry.

To show the set is minimally invariant, we appeal to Theorem 4.1.10, and
prove that any two elliptic lines are congruent. To see this, notice that any elliptic
line L is congruent to the elliptic line on the real axis. Indeed, for any points z0
and z1 on L, Lemma 6.2.3 ensures the existence of a transformation T in S that
sends z0 to the origin, and z1 to the real axis. It follows that T (L) is the real
axis. Since all elliptic lines are congruent to the real axis, any two elliptic lines
are congruent. �

Theorem 6.2.13 Any two elliptic lines intersect in P2.

Proof. Given any two elliptic lines, apply a transformation T in S that sends
one of them to the real axis. It is enough to prove that any elliptic line in P2 must
intersect the real axis. Suppose M is an arbitrary elliptic line in P2 and z is a
point on M . If Im(z) = 0 then z is on the real axis and we are done.
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If Im(z) > 0, then z lies above the real axis. It follows that Im(za) < 0 by the
definition of the antipodal point za. Since M contains both z and za it intersects
the real axis at some point.

If Im(z) < 0, then Im(za) > 0 and M must intersect the real axis as before.
In either case, M must intersect the real axis, and it follows that any two elliptic
lines must intersect. �

As an immediate consequence of this theorem, there is no notion of parallel
lines in elliptic geometry.

Corollary 6.2.14 If p in P2 is not on the elliptic line L, then every elliptic line
through p intersects L.

Exercises
1. The transformation group in elliptic geometry.

a. Prove that S is a group of transformations.

b. For each θ ∈ R and z0 ∈ C, prove that the following Möbius transforma-
tion is in S:

T (z) = eiθ
z − z0

1 + z0z
.

c. For each θ ∈ R, prove that T (z) = eiθ 1
z is in S.

d. Use (b) and (c) to prove that for any distinct points p, q ∈ C+ there
exists a transformation in S that sends p to 0 and q to a point on the
positive real axis, thus proving Lemma 6.2.3.

2. Prove that the disk model for elliptic geometry is homogeneous.

3. Given a point z not on an elliptic line L, prove there exists an elliptic line
through z that intersects L at right angles.

4. Is there a nonidentity transformation in S that fixes two distinct points in
P2? If so, find one, otherwise explain why no such transformation exists.

5. Find a transformation in S that sends the point 1
2 to the point 1

2 + 1
2 i.

6.3 Measurement in Elliptic Geometry
Rather than derive the arc-length formula here as we did for hyperbolic geometry,
we state the following definition and note the single sign difference from the
hyperbolic case. This sign difference is consistent with the sign difference in the
algebraic descriptions of the transformations in the respective geometries.

Definition 6.3.1 If r : [a, b]→ P2 is a smooth curve in (P2,S), the length of r,
denoted L(r), is given by

L(r) =
∫ b

a

2|r′(t)|
1 + |r(t)|2 dt.
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The area of a figure R described in polar coordinates in the elliptic space P2,
denoted A(R), is given by

A(R) =
∫∫

R

4r
(1 + r2)2 drdθ.

♦

Theorem 6.3.2 Arc-length is an invariant of elliptic geometry.
The proof of this theorem is left as an exercise, and is essentially the same as

the proof that hyperbolic arc-length is an invariant of hyperbolic geometry, from
which it follows that area is invariant. One can also prove that the shortest path
between two points is along the elliptic line between them. That is, geodesics
follows elliptic lines.

However, one must be careful when measuring the shortest path between
points in the projective plane. If p and q are two points in P2 then there is exactly
one elliptic line through them both, but we may view this line as consisting of
two elliptic segments, both of which connect p to q. That is, if a bug finds herself
at point p and wants to walk along an elliptic line to point q, she can do so
by proceeding in either direction along the line, as shown in Figure 6.3.3. The
elliptic distance between p and q, which we denote by dS(p, q), is then the
minimum value of the two segment lengths.

p

q

(1)

(2)

Figure 6.3.3 There is a single elliptic line joining points p and q, but two elliptic
line segments. The distance from p to q is the shorter of these two segments.

Theorem 6.3.4 The distance between two points p and q in (P2,S) is

dS(p, q) = min
{

2 arctan
(∣∣∣∣ q − p1 + pq

∣∣∣∣) , 2 arctan
(∣∣∣∣1 + pq

q − p

∣∣∣∣)} .

Proof. We first determine the elliptic distance between the origin and a point
x (with 0 < x ≤ 1) on the positive real axis.

The elliptic line through 0 and x lives on the real axis, and we may parameterize
the “eastbound” segment connecting 0 to x by r(t) = t for 0 ≤ t ≤ x. (The
“westbound” segment from 0 to x is clearly not shorter than the eastbound
segment.) The length of this segment is∫ x

0

2|r′(t)|
1 + |r(t)|2 dt =

∫ x

0

2|1|
1 + |t|2 dt
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= 2
∫ x

0

1
1 + t2

dt

= 2 arctan(x).

Thus, dS(0, x) = 2 arctan(x), for 0 < x ≤ 1.
To determine the distance dS(p, q) between arbitrary points in P2, we may

first apply a transformation in S that sends p to the origin, and q to a point on
the positive real axis. By an appropriate choice of θ, the transformation

T (z) = eiθ
z − p
1 + pz

will do the trick. Now, T is a Möbius transformation of the entire extended plane,
and it may take q outside the unit disk, in which case qa will be mapped to a
point on the real axis inside the unit disk. So, either |T (q)| or |T (qa)| will be a
real number between 0 and 1. If we call this number x, then dS(p, q) = dS(0, x),
since transformations in S preserve distance between points.

Now,

|T (q)| =
∣∣∣∣ q − p1 + pq

∣∣∣∣,
and the reader can check, using the fact that qa = −1/q, that

|T (qa)| =
∣∣∣∣1 + pq

q − p

∣∣∣∣ .
It follows that

dS(p, q) = min
{

2 arctan
(∣∣∣∣ q − p1 + pq

∣∣∣∣) , 2 arctan
(∣∣∣∣1 + pq

q − p

∣∣∣∣)} .

This completes the proof. �

With the sphere as our model, we can check our formulas against measurements
on the sphere. For instance, dS(0, 1) = 2 arctan(1) = π/2. The elliptic segment
from 0 to 1 corresponds via stereographic projection to one-quarter of a great
circle on the unit sphere. Any great circle on the unit sphere has circumference 2π,
so one-quarter of a great circle has length π/2 on the sphere. We also note that the
distance formula dS(0, x) = 2 arctan(x) applies to spherical geometry (C+,S) for
all positive real numbers x, and this distance matches the corresponding distances
of the points on the unit 2-sphere, see Exercise 6.3.12.

We emphasize that π/2 is an upper bound for the distance between two points
in (P2,S). However, there is no upper bound on how long a journey along an
elliptic line can be. If Bormit the bug wants to head out from point p and travel
r units along any line, Bormit can do it, without obstruction, for any r > 0. Of
course, if r is large enough, Bormit will do “laps” on this journey. We say a path
is a geodesic path if it follows along an elliptic line.

Definition 6.3.5 In (P2,S), the elliptic circle centered at z0 with radius r
consists of all points z ∈ P2 such that there exists a geodesic path of length r
from z0 to z. ♦

Each transformation T in S is an elliptic Möbius transformation by Theo-
rem 6.2.4 that fixes two antipodal points, say p and pa. So T pushes points along
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type II clines of p and pa, and since transformations preserve distance between
points, these type II clines of p and pa determine elliptic circles; all points on
these type II clines are equidistant from p.

Now, suppose p and q are any distinct points in P2. There exists a type II
cline of p and pa that goes through q. If this cline lives entirely inside the closed
unit disk it represents the elliptic circle centered at p through q. Of course, this
cline may not live entirely inside the disk, as is the case in Figure 6.3.6. But each
point on the type II cline of p and pa through q has antipodal point on the type
II cline of p and pa through qa. So, in P2 we may represent the elliptic circle
centered at p through q by the portions of these two type II clines of p and pa
that live in the closed unit disk.

p

q

pa

qa

Figure 6.3.6 The elliptic circle centered at p through q in P2 may consist of
portions of two distinct clines.

We note also that elliptic circles centered at the origin correpond to Euclidean
circles centered at the origin. In particular, a Euclidean circle centered at the
origin with Euclidean radius a (with 0 < a < 1) corresponds to an elliptic circle
centered at the origin with elliptic radius 2 arctan(a).

Theorem 6.3.7 An elliptic circle in P2 with elliptic radius r < π/2 has circum-
ference C = 2π sin(r).

The proof of this theorem is left as an exercise. Circles with elliptic radius
greater than or equal to π/2 are also investigated in the exercises. They may not
look like circles!

The area of a triangle. We now turn our attention to finding a formula for
the area of a triangle in elliptic geometry. We begin with lunes. A lune is the
region in P2 bounded between two elliptic lines. How do two elliptic lines bound a
region? Two lines trap a region because we are identifying antipodal points on the
unit circle. A bug living in the shaded region of P2 pictured in Figure 6.3.8 would
be able to visit all shaded points without crossing the boundary walls determined
by the two elliptic lines. The shaded region is a single, connected region bounded
by two lines. So what is the area of this region?
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α

Figure 6.3.8 A lune in P2 with angle α.

Lemma 6.3.9 The area of a lune. In (P2,S), the area of a lune with angle α
is 2α.
Proof. To compute the area of a lune, first move the vertex of the lune
to the origin in such a way that one leg of the lune lies on the real axis, as in
Figure 6.3.10. Then half of the lunar region can be described in polar coordinates
by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ α.

α

Figure 6.3.10 A lune whose elliptic lines intersect at the origin.
So the area of a lune having angle α is given by

A = 2
∫ α

0

∫ 1

0

4r
(1 + r2)2 drdθ (Let u = 1 + r2)

= 2
∫ α

0

[
−2

1 + r2

∣∣∣∣1
0

]
dθ

= 2
∫ α

0
1 dθ

= 2α.

�
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Example 6.3.11 Triangle area in (P2,S).

Triangle ∆pqr below is formed from 3 elliptic lines. Notice that each corner
of the triangle determines a lune, and that the three lunes cover the entire
projective plane, with some overlap. In particular, the three lunes in sum
cover the triangle three times, so the sum of the three lune areas equals the
area of the entire projective plane plus two times the area of the triangle.

p

r
q

α

β
γ

The area of the entire projective plane is 2π (see Exercise 6.3.9), so we
have the following relation:

2π + 2 ·A(∆pqr) = A(Lune p) +A(Lune q) +A(Lune r)
2π + 2 ·A(∆pqr) = (2α+ 2β + 2γ)

A(∆pqr) = (α+ β + γ)− π.

We summarize the result of this example with the following theorem.

Theorem 6.3.12 In elliptic geometry (P2,S), the area of a triangle with angles
α, β, γ is

A = (α+ β + γ)− π.
From this theorem it follows that the angles of any triangle in elliptic geometry

sum to more than 180◦.
We close this section with a discussion of trigonometry in elliptic geometry.

We derive formulas analogous to those in Theorem 5.4.12 for hyperbolic triangles.
We assume here that the triangle determined by distinct points p, q and z in
(P2,S) is formed by considering the shortest paths connecting these three points.
So triangle side lenghths will not exceed π/2 in what follows.
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a

b

c
q

r

α

γ β
0

Figure 6.3.13 An elliptic triangle with side lengths and angles marked.

Theorem 6.3.14 Suppose we have an elliptic triangle with elliptic side lengths
a, b, and c, and angles α, β, and γ as in Figure 6.3.13. Then the following laws
hold:

a. Elliptic law of cosines

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ).

b. Elliptic law of sines

sin(a)
sin(α) = sin(b)

sin(β) = sin(c)
sin(γ) .

Proof. a. Position our triangle conveniently, with one corner at the origin, one
on the positive real axis at the point r (0 < r ≤ 1), and one at the point q = keiγ

(with 0 < k ≤ 1) as in Figure 6.3.13. Then a = dS(0, r) = 2 arctan(r), so that

cos(a) = cos(2 arctan(r))
= cos2(arctan(r))− sin2(arctan(r))

by the cosine double angle formula. If we set θ = arctan(r) we may use the
following right triangle to rewrite the above description of cos(a) as follows:

cos(a) = 1
1 + r2 −

r2

1 + r2

= 1− r2

1 + r2

1

r√ 1 + r
2

θ

On the other hand,

sin(a) = sin(2 arctan(r))
= 2 sin(arctan(r)) cos(arctan(r)),

from which it follows that
sin(a) = 2r

1 + r2 .
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Turning our attention to the side with length b, b = dS(0, q) = 2 arctan(|q|) =
2 arctan(k), since q = keiγ with k > 0. It follows that

cos(b) = 1− k2

1 + k2 and sin(b) = 2k
1 + k2 .

And the third side? Theorem 6.3.4 tells us

c = dS(r, keiγ) = 2 arctan
(∣∣∣∣ keiγ − r1 + rkeiγ

∣∣∣∣) .

Since in general cos(2 arctan(x)) = (1− x2)/(1 + x2), it follows that

cos(c) = |1 + rkeiγ |2 − |keiγ − r|2

|1 + rkeiγ |2 + |keiγ − r|2 ,

which can be expanded using |z|2 = z · z, and then reduced to obtain

cos(c) = 1 + r2k2 − k2 − r2 + 2rk(eiγ + e−iγ)
1 + r2 + k2 + r2k2 .

Now, eiγ + e−iγ = 2 cos(γ), so we have

cos(c) = (1− r2)(1− k2) + 2rk2 cos(γ)
(1 + r2)(1 + k2)

= 1− r2

1 + r2 ·
1− k2

1 + k2 + 2r
1 + r2 ·

2k
1 + k2 cos(γ)

= cos(a) cos(b) + sin(a) sin(b) cos(γ).

Though we worked out the formula for a conveniently located triangle, it holds
for any triangle in elliptic geometry because angles and distances are preserved by
transformations in elliptic geometry, and there is a transformation that takes any
triangle to this convenient location.

b. To prove the elliptic law of sines, first construct the circle containing side
c. This circle goes through r and q and their antipodal points −1/r and qa as
pictured in Figure 6.3.15. We let p denote the center of the circle, and R its
Euclidean radius.

- 1
r

mr

mq

R

R

p

q

r

α

β0

qa

γ

β
α

Figure 6.3.15 Deriving the elliptic law of sines.
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Let mr be the midpoint of the segment connecting r and −1/r, and let mq be
the midpoint of the segment connecting q and qa. So,

|mr − r| =
1
2

(
r + 1

r

)
= 1 + r2

2r ,

and
|mq − q| =

∣∣∣∣12
(
k + 1

k

)
eiγ
∣∣∣∣ = 1 + k2

2k .

Note further that ∆pmrr is right, and ∠mrrp = π/2− β so that ∠rpmr = β.
From this right triangle we see sin(β) = (1 + r2)/(2rR).

Similarly, ∆pmqq is right, and we have ∠mqpq = α, and sin(α) = (1 +
k2)/(2kR).

Comparing ratios,

sin(a)
sin(α) = 2r

1 + r2 ·
2kR

1 + k2

= 2k
1 + k2 ·

2rR
1 + r2

= sin(b)
sin(β) .

To see that the ratio sin(c)/ sin(γ) must match the preceding common ratio,
note that transformations in elliptic geometry preserve distances and angles, so
we may transform our triangle above to one in which the length c is now on the
real axis with one end at the origin. The argument above ensures that the ratio
sin(c)/ sin(γ) then matches one of the other ratios, and so all three agree. �

Corollary 6.3.16 Elliptic hypotenuse theorem. In a right triangle in (P2,S)
with elliptic side lengths a and b, and hypotenuse c,

cos(c) = cos(a) cos(b).

Exercises
1. Prove Theorem 6.3.7. Namely, prove that the circumference of a circle in

elliptic geometry is C = 2π sin(r), where r < π/2 is the elliptic radius.

2. Prove
lim
r→0+

2π sin(r)
2πr = 1.

Thus, for small r, the Euclidean formula for the circumference of a circle is
a good approximation to the true circumference of a circle in elliptic geometry.

3. Circles with large radius.
a. Give a careful sketch of the circle centered at 0 with elliptic radius π/2.

b. Give a careful sketch of the circle centered at 0 with elliptic radius 2π/3.

c. Give a careful sketch of the circle centered at 0 with elliptic radius π.

d. Give a careful sketch of the circle centered at 0 with elliptic radius 2π.
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4. Let C be an elliptic circle with center z0 and elliptic radius r > 0. For what
value(s) of r is C an elliptic line? For what value(s) of r is C a single point?

5. Determine the elliptic distance between 1
2 and 1

2 i.

6. Prove that the area of a circle in elliptic geometry with radius r < π/2 is

A = 4π sin2(r/2).

7. Prove
lim
r→0+

4π sin2(r/2)
πr2 = 1.

Thus, for small r, the Euclidean formula for the area of a circle is a good
approximation to the true area of a circle in elliptic geometry.

8. Prove that arc-length is an invariant of elliptic geometry.

9. Prove that the area of P2 is 2π. Thus, unlike the hyperbolic case, the space
in elliptic geometry has finite area.

10. An intrepid tax collector lives in a country in the elliptic space P2. For
collection purposes, the country is divided into triangular grids. The collector
observes that the angles of the triangle she collects in are 92◦, 62◦, and 27◦.
What is the area of her triangle? (Be sure to convert the angles to radians.)
Can the entire space P2 be subdivided into a finite number of triangles?

11. Find a formula for the area of an n-gon in elliptic geometry (P2,S), given
that its n angles are α1, α2, · · · , αn.

12. In this exercise we show the distance between any two points p and q in
spherical geometry (C+,S) is

dS(p, q) = 2 arctan
(∣∣∣∣ q − p1 + pq

∣∣∣∣) ,

and that dS(p, q) corresponds to the distance on the sphere between φ−1(p)
and φ−1(q).

a. The definition of arc-length in spherical geometry (C+,S) is the same
as the one for (P2,S). Using this definition, follow the proof of Theo-
rem 6.3.4 to show that for any positive real number x in C+, dS(0, x) =
2 arctan(x).

b. Use invariance of arc-length to explain why, for arbitrary p and q in C+,

dS(p, q) = 2 arctan
(∣∣∣∣ q − p1 + pq

∣∣∣∣) .

c. Suppose x > 0 is a real number. Determine φ−1(x), the point on the
unit sphere corresponding to x via stereographic projection. What is
φ−1(0)?

d. Determine the distance between φ−1(0) and φ−1(x) on the sphere. In
particular, show that this distance equals arccos((1 − x2)/(1 + x2)).
Hint: the distance between these points will equal the angle between the
vectors to these points, and this angle can be found using the formula
cos(θ) = ~v · ~w for two unit vectors.
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e. Show that for x > 0, arccos((1 − x2)/(1 + x2)) = 2 arctan(x). Hint:
You may find the following half-angle formula useful: tan(θ/2) =
tan(θ)/(sec(θ) + 1).

13. Prove that (P2,S) is isotropic.

6.4 Revisiting Euclid’s Postulates

Without much fanfare, we have shown that the geometry (P2,S) satisfies the first
four of Euclid’s postulates, but fails to satisfy the fifth. This is also the case with
hyperbolic geometry (D,H). Moreover, the elliptic version of the fifth postulate
differs from the hyperbolic version. It is the purpose of this section to provide the
proper fanfare for these facts.

Recall Euclid’s five postulates:

1. One can draw a straight line from any point to any point.

2. One can produce a finite straight line continuously in a straight line.

3. One can describe a circle with any center and radius

4. All right angles equal one another.

5. Given a line and a point not on the line, there is exactly one line through
the point that does not intersect the given line.

That the first postulate is satisfied in (P2,S) is Theorem 6.2.11.
The second postulate holds here even though our elliptic space is finite. We

can extend line segments indefinitely because the space has no boundary. If we
are at a point in the space, and decide to head off in a certain direction along
an elliptic straight line, we can walk for as long and far as we want (though we
would eventually return to our starting point and continue making laps along the
elliptic line).

The third postulate follows by a similar argument. In the previous section we
defined a circle about any point in P2. And since we can walk an arbitrarily long
distance from any point, we can describe a circle of any radius about the point.

The fourth postulate follows since Möbius transformations preserve angles
and the maps in S are special Möbius transformations.

The fifth postulate fails because any two elliptic lines intersect (Theorem 6.2.13).
Thus, given a line and a point not on the line, there is not a single line through
the point that does not intersect the given line.

Recall that in our model of hyperbolic geometry, (D,H), we proved that given
a line and a point not on the line, there are two lines through the point that do
not intersect the given line.

So we have three different, equally valid geometries that share Euclid’s first
four postulates, but each has its own parallel postulate. Furthermore, on a small
scale, the three geometries all behave similarly. A tiny bug living on the surface of
a sphere might reasonably suspect Euclid’s fifth postulate holds, given his limited
perspective. A tiny bug in the hyperbolic plane would reasonably conclude the
same. Small triangles have angles adding up nearly to 180◦, and small circles
have areas and circumferences that are accurately described by the Euclidean
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formulas πr2 and 2πr. We explore geometry on surfaces in more detail in the
next chapter.
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7

Geometry on Surfaces

In hyperbolic geometry (D,H) and elliptic geometry (P2,S), the area of a triangle
is determined by the sum of its angles. This is a significant difference from
Euclidean geometry, in which a triangle with three given angles can be built to
have any desired area. Does this mean that if a bug lives in a world adhering to
elliptic geometry, it can never stumble upon a triangle with three right angles
having area 3π? Yes and no. In the elliptic geometry as defined in Chapter 6,
no such triangle exists because a triangle with 3 right angles must have area
(π2 + π

2 + π
2 ) − π = π

2 . So the answer appears to be yes. However, the elliptic
geometry (P2,S) models the geometry of the unit sphere, and this choice of sphere
radius is somewhat arbitrary. What if the radius of the sphere changes? Imagine
a triangle with three right angles having one vertex at the north pole and two
vertices on the equator. If the sphere uniformly expands, the angles of the triangle
will stay the same, but the area of the triangle will increase. So, if a bug is
convinced she lives in a world with elliptic geometry, but is also convinced she has
found a triangle with three right angles and area 3π, the bug might be drawn to
conclude she lives in a world modeled on a larger sphere than the unit 2-sphere.

The key geometrical property of a space dictating the relationship between
the angles of a triangle and its area is called curvature. Curvature also dictates
the relationship between the circumference of a circle and its radius.

7.1 Curvature
Consider the smooth curve in Figure 7.1.1. The curvature of the curve at a point
is a measure of how drastically the curve bends away from its tangent line, and
this curvature is often studied in a multivariable calculus course. The radius of
curvature at a point corresponds to the radius of the circle that best approximates
the curve at this point. The radius r of this circle is the reciprocal of the curvature
k of the curve at the point: k = 1/r.

145
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r

Figure 7.1.1 The curvature of a curve.
The curvature of a surface (such as the graph of a function z = f(x, y)) at a

particular point is a measure of how drastically the surface bends away from its
tangent plane at the point. There are three fundamental types of curvature. A
surface has positive curvature at a point if the surface lives entirely on one side of
the tangent plane, at least near the point of interest. The surface has negative
curvature at a point if it is saddle-shaped, in the sense that the tangent plane
cuts through the surface. Between these two cases is the case of zero curvature.
In this case the surface has a line along which the surface agrees with the tangent
plane. For instance, a cylinder has zero curvature, as suggested in Figure 7.1.2(c).

(a) (b) (c)

Figure 7.1.2 The curvature of a surface at a point can be (a) positive; (b)
negative; or (c) zero.

This informal description of curvature makes use of how the surface is embedded
in space. One of Gauss’ great theorems, one he called his Theorem Egregium,
states that the curvature of a surface is an intrinsic property of the surface. The
curvature doesn’t change if the surface is bent without stretching, and our tireless
two-dimensional inhabitant living in the space can determine the curvature by
taking measurements.

A two-dimensional bug living in the hyperbolic plane, the projective plane, or
the Euclidean plane would notice that a small circle’s circumference is related to
its radius by the Euclidean formula c ≈ 2πr. In Euclidean geometry this formula
applies to all circles, but in the non-Euclidean cases, the observant bug might
notice in large circles a significant difference between the actual circumference
of a circle and the circumference predicted by c = 2πr. Large circles about
a cup-shaped point with positive curvature will have circumference less than
that predicted by Euclidean geometry. This fact explains why a large chunk of
orange peel fractures if pressed flat onto a table. Large circles drawn around a
saddle-shaped point with negative curvature will have circumference greater than
that predicted by the Euclidean formula.

Calculus may be used to precisely capture this deviation between the Euclidean-
predicted circumference 2πr and the actual circumference c for circles of radius r
in the different geometries.

Recall that in the hyperbolic plane, c = 2π sinh(r); in the Euclidean plane
c = 2πr; and in the elliptic plane c = 2π sin(r). In Figure 7.1.3 we have graphed
the ratio c

2πr where c is the circumference of a circle with radius r in (a) the
hyperbolic plane; (b) the Euclidean plane; and (c) the elliptic plane.
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0.2 0.4 0.6 0.8 1

0.8

1

1.2 (a)

(b)

(c)

radius r

ra
tio

c/
(2
π
r)

Figure 7.1.3 Plotting the ratio c/2πr against r in (a) hyperbolic geometry, (b)
Euclidean geometry, and (c) elliptic geometry.

In all three cases, the ratio c/2πr approaches 1 as r shrinks to 0. Furthermore,
in all three cases the derivative of the ratio approaches 0 as r → 0+. But with
the second derivative of the ratio we may distinguish these geometries. It can
be shown that the curvature at a point is proportional to this second derivative
evaluated in the limit as r → 0+. We will not derive this formula for curvature,
but will use this working definition as it appears in Thurston’s book [11].

Definition 7.1.4 Suppose a circle of radius r about a point p is drawn in a space1,
and its circumference is c. The curvature of the space at p is

k = −3 lim
r→0+

d2

dr2

[
c

2πr

]
.

♦
Since we are interested in worlds that are homogeneous and isotropic, we will

focus our attention on worlds in which the curvature is the same at all points.
That is, we investigate surfaces of constant curvature.

Example 7.1.5 The curvature of a sphere.

Consider the sphere with radius s in the following diagram, and note
the circle centered at the north pole N having surface radius r. The
circle is parallel to the plane z = 0, has Euclidean radius x, and hence
circumference 2πx.

1the term `space’ is intentionally vague here. Our space needs to have a well-defined metric,
so that it makes sense to talk about radius and circumference. The space might be the Euclidean
plane, the hyperbolic plane or the sphere. Other spaces are discussed in Section 7.5.
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s

x

θ

N
r

But x = s sin(θ) and r = θ · s, from which we deduce x = s sin( rs ), and
in terms of the surface radius r of the circle, its circumference is

c = 2πs sin
(
r

s

)
.

The curvature of the sphere at N is thus

k = −3 lim
r→0+

d2

dr2

[
2πs sin(r/s)

2πr

]
.

Cancelling the 2π terms and replacing sin(r/s) with its power series
expansion, we have

k = −3 lim
r→0+

d2

dr2

[
s( rs −

r3

6s3 + r5

120s5 − · · · )
r

]

= −3 lim
r→0+

d2

dr2

[
1− r2

6s2 + r4

120s4 − · · ·
]

= −3 lim
r→0+

[
−1
3s2 + 12r2

120s4 − · · ·
]
.

Note that all the terms of the second derivative after the first have
powers of r in the numerator, so these terms go to 0 as r → 0+, and the
curvature of the sphere at the north pole is 1/s2. In fact because the
sphere is homogeneous, the curvature at any point is

k = 1
s2 .

Example 7.1.6 Curvature of the hyperbolic plane.

Because hyperbolic geometry is homogeneous and its transformations
preserve circles and lengths, the curvature is the same at all points in the
hyperbolic plane. We choose to compute the curvature at the origin.
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Recall, the circumference of a circle in (D,H) is c = 2π sinh(r). To
compute the curvature, use the power series expansion

sinh(r) = r + r3

3! + r5

5! + · · · .

k = −3 lim
r→0+

d2

dr2

[
2π sinh(r)

2πr

]
= −3 lim

r→0+

d2

dr2

[
1 + r2

3! + r4

5! + · · ·
]

= −3 lim
r→0+

[
1
3 + 12r2

5! + · · ·
]
.

Again, each term of the second derivative after the first has a power of
r in its numerator, so in the limit as r → 0+, each of these terms vanishes.
Thus, the curvature of the hyperbolic plane in (D,H) is k = −1.

Exercises
1. Use our working definition to show that the curvature of the projective plane

in elliptic geometry is 1. Recall, c = 2π sin(r) in this geometry.

2. Use our working definition to explain why the curvature of the Euclidean
plane is k = 0.

7.2 Elliptic Geometry with Curvature k > 0
One may model elliptic geometry on spheres of varying radii, and a change in
radius will cause a change in the curvature of the space as well as a change in the
relationship between the area of a triangle and its angle sum.

For any real number k > 0, we may construct a sphere with constant curvature
k. According to Example 7.1.5, the sphere centered at the origin with radius
1/
√
k works. Geometry on this sphere can be modeled down in the extended

plane via stereographic projection. This geometry will be called elliptic geometry
with curvature k > 0.

Consider the sphere S2
k centered at the origin of R3 with radius 1/

√
k. Define

stereographic projection φk : S2
k → C+, just as we did in Section 3.3, to obtain

the formula

φk(a, b, c) =

 a
1−c
√
k

+ b
1−c
√
k
i if c 6= 1√

k
;

∞ if c = 1√
k

.

Diametrically opposed points on S2
k get mapped via φk to points z and za that

satisfy the equation za = −1
kz , by analogy with Lemma 6.1.2. We call two such

points in C+ antipodal with respect to S2
k, or just antipodal points if the value of

k is understood.
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Our model for elliptic geometry with curvature k has space P2
k equal to the

closed disk in C of radius 1/
√
k, with antipodal points of the boundary identified.

This space is simply a scaled version of the projective plane from Chapter 6.
The group of transformations, denoted Sk, consists of those Möbius transfor-

mations that preserve antipodal points with respect to S2
k. That is, T ∈ Sk if and

only if the following holds:

if za = − 1
kz

then T (za) = − 1
kT (z)

.

The geometry (P2
k,Sk) with k > 0 is called elliptic geometry with cur-

vature k. Note that (P2
1,S1) is precisely the geometry we studied in Chapter

6.
The transformations of C+ in the group Sk correspond precisely with rotations

of the sphere S2
k. One can show that transformations in Sk have the form

T (z) = eiθ
z − z0

1 + kz0z
.

We define lines in elliptic geometry with curvature k to be clines with the
property that if they go through z then they go through za = − 1

kz . These lines
correspond precisely to great circles on the sphere S2

k.
The arc-length and area formulas also slip gently over from Chapter 6 to this

more general setting.
The arc-length of a smooth curve r in P2

k is

L(r) =
∫ b

a

2|r′(t)|
1 + k|r(t)|2 dt.

As before, arc-length is an invariant, and the shortest path between two points
is along the elliptic line through them. In the exercises we derive a formula for the
distance between points in this geometry. The greatest possible distance between
two points in (P2

k,Sk) turns out to be π/(2
√
k).

The area of a region R given in polar form is computed by the formula

A(R) =
∫∫

R

4r
(1 + kr2)2 drdθ.

To compute the area of a triangle, proceed as in Chapter 6. First, tackle the
area of a lune, a 2-gon whose sides are elliptic lines in (P2

k,Sk).

Lemma 7.2.1 Assume k > 0. A lune in (P2
k,Sk) with interior angle α has area

2α/k.

Proof. Without loss of generality, we may consider the vertex of our lune to
be the origin. As before, elliptic lines through the origin must also pass through
∞, so our two lines forming the lune are Euclidean lines. After a convenient
rotation, we may further assume one of these lines is the real axis, so that the lune
resembles the one in Figure 6.3.10. To compute the area of the lune, compute the
integral

A = 2
∫ α

0

∫ 1/
√
k

0

4r
(1 + kr2)2 drdθ.
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Letting u = 1 + kr2 so that du = 2krdr, the bounds of integration change
from [0, 1/

√
k] to [1, 2]. Then,

A = 2
∫ α

0

2
k

∫ 2

1

du

u2 dθ = 4
k

∫ α

0

1
2dθ = 2α

k
.

Thus, the angle of a lune with interior angle α is 2α/k. �

We remark that the lune with angle π actually covers the entire disk of radius
1/
√
k. Thus, the area of the entire space P2

k is 2π/k, which matches half the
surface area of a sphere of radius 1/

√
k. We often call s = 1/

√
k the radius of

curvature for the geometry; it is the radius of the disk on which we model the
geometry.

Also, the integral computation in the proof of Lemma 7.2.1 reveals the following
useful antiderivative: ∫ 4r

(1 + kr2)2 dr = −2
k(1 + kr2) + C.

This fact may speed up future integral computations.

Lemma 7.2.2 In elliptic geometry with curvature k, the area of a triangle with
angles α, β, and γ is

A = 1
k

(α+ β + γ − π).

Proof. As in the case k = 1, the area of any triangle may be determined from
the area of three lunes and the total area of P2

k, as depicted in Example 6.3.11. �

Example 7.2.3 Triangles on the Earth.

The surface of the Earth is approximately spherical with radius about 6375
km. Therefore, the geometry on the surface of the Earth can be reasonably
modeled by (P2

k,Sk) where k = 1/63752 km−2. The area of a triangle on
the Earth’s surface having angles α, β, and γ is

A = 1
k

(α+ β + γ − π).

Can you find the area of the triangle formed by Paris, New York, and Rio?
Use a globe, a protractor, and some string. The string follows a geodesic
between two points when it is pulled taut.

Exercises
1. Prove that for k > 0, any transformation in Sk has the form

T (z) = eiθ
z − z0

1 + kz0z
,

where θ is any real number and z0 is a point in P2
k.

2. Verify the formula for the stereographic projection map φk.
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3. Assume k > 0 and let s = 1/
√
k. Derive the following measurement formulas

in (P2
k,Sk).

a. The length of a line segment from 0 to x, where 0 < x ≤ s is

dk(0, x) = 2s arctan(x/s).

b. The circumference of the circle centered at the origin with elliptic radius
r < π/(2

√
k) is C = 2πs sin(r/s).

c. The area of the circle centered at the origin with elliptic radius r <
π/(2
√
k) is A = 4πs2 sin2

( r
2s

)
.

4. In this exercise we investigate the idea that the elliptic formulas in Exer-
cise 7.2.3 for distance, circumference, and area approach Euclidean formulas
when k → 0+.

a. Show that the elliptic distance dk(0, x) from 0 to x, where 0 < x ≤ s,
approaches 2x as k → 0+ (twice the usual notion of Euclidean distance).

b. Show that the elliptic circumference of a circle with elliptic radius r
approaches 2πr as k → 0+.

c. Show that the elliptic area of this circle approaches πr2 as k → 0+.

5. Triangle trigonometry in (P2
k,Sk).

Suppose we have a triangle in (P2
k,Sk) with side lengths a, b, c and angles

α, β, γ as pictured in Figure 6.3.13.

a. Prove the elliptic law of cosines in (P2
k,Sk):

cos(
√
kc) = cos(

√
ka) cos(

√
kb) + sin(

√
ka) sin(

√
kb) cos(γ).

b. Prove the elliptic law of sines in (P2
k,Sk):

sin(
√
ka)

sin(α) = sin(
√
kb)

sin(β) = sin(
√
kc)

sin(γ) .

7.3 Hyperbolic Geometry with Curvature k < 0
We may do the same gentle scaling of the Poincaré model of hyperbolic geometry
as we did in the previous section to the disk model of elliptic geometry. In
particular, for each negative number k < 0 we construct a model for hyperbolic
geometry with curvature k.

We define the space Dk to be the open disk of radius 1/
√
|k| centered at the

origin in C. That is, Dk consists of all z in C such that |z| < 1/
√
|k|. In this

setting, the circle at infinity is the boundary circle |z| = 1/
√
|k|.

The group Hk consists of all Möbius transformations that send Dk to itself.
The geometry (Dk,Hk) with k < 0 is called hyperbolic geometry with cur-
vature k. Pushing analogy with the elliptic case, we may define the group of
transformations to consist of all Möbius transformations with this property: if z
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and z∗ are symmetric with respect to the circle at infinity then T (z) and T (z∗)
are also symmetric with respect to the circle at infinity. Noting that the point
symmetric to z with respect to this circle is z∗ = 1

|k|z
= − 1

kz
, we draw the

satisfying conclusion that T ∈ Hk if and only if the following holds:

if z∗ = − 1
kz

then T (z∗) = − 1
kT (z)

.

Thus, the group Hk in the hyperbolic case has been defined precisely as the
group Sk in the elliptic case. Furthermore, one can show that transformations in
Hk have the form

T (z) = eiθ
z − z0

1 + kz0z
,

where z0 is a point in Dk.
Straight lines in this geometry are the clines in C+ orthogonal to the circle at

infinity. By Theorem 3.2.8, a straight line in (Dk,Hk) is precisely a cline with the
property that if it goes through z then it goes through its symmetric point −1

kz .
The arc-length and area formulas also get tweaked by the scale factor, and

now look identical to the formulas for elliptic geometry with curvature k.
The arc-length of a smooth curve r in Dk is

L(r) =
∫ b

a

2|r′(t)|
1 + k|r(t)|2 dt.

The area of a region R given in polar coordinates is computed by the formula

A(R) =
∫∫

R

4r
(1 + kr2)2 drdθ.

As in Chapter 5 when k was fixed at -1, the area formula is a bear to use, and
one may convert to an upper half-plane model to determine the area of a 2

3 -ideal
triangle in Dk. The ambitious reader might follow the methods of Section 5.5 to
show that the area of a 2

3 -ideal triangle in (Dk,Hk) (k < 0) with interior angle α
is − 1

k (π − α).
With this formula in hand, we can derive the area of any triangle in Dk in

terms of its angles, exactly as we did in Chapter 5.

Lemma 7.3.1 In hyperbolic geometry with curvature k, the area of a triangle
with angles α, β, and γ is

A = 1
k

(α+ β + γ − π).

Observing negative curvature
Suppose we are located at a point z in a hyperbolic universe with curvature k.
We see in the distance a hyperbolic line L that seems to extend indefinitely. We
might intuitively see the point w on the line that is closest to us, as suggested in
Figure 7.3.2. Now suppose we look down the road a bit to a point v. If v is close
to w the angle ∠wzv will be close to 0. As v gets further and further away from
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w, the angle will grow, getting closer and closer to the angle θ = ∠wzu, where u
is an ideal point of the line L.

z

w

u

θ

v

d

L

Figure 7.3.2 The angle of parallelism θ of a point z to a line L.
A curious fact about hyperbolic geometry is that this angle θ, which is called

the angle of parallelism of z to L, is a function of z’s distance d to L. In
Section 5.4 we saw that cosh(d) = 1/ sin(θ) in (D,H). In particular, one may
deduce the distance d to the line L by computing θ. No such analogy exists in
Euclidean geometry. In a Euclidean world, if one looks farther and farther down
the line L, the angle will approach 90◦, no matter one’s distance d from the line.
The following theorem provides another formula relating the angle of parallelism
to a point’s distance to a line.

Theorem 7.3.3 Lobatchevsky’s formula. In hyperbolic geometry with cur-
vature k, the hyperbolic distance d of a point z to a hyperbolic line L is related to
the angle of parallelism θ by the formula

tan(θ/2) = e−
√
|k|d.

Proof. For this proof, let s = 1√
|k|

. Note that s is the Euclidean radius of
the circle at infinity in the disk model for hyperbolic geometry with curvature k.
Since angles and lines and distances are preserved, assume z is the origin and L is
orthogonal to the positive real axis, intersecting it at the point x (with 0 < x < s).

s
r

θ
x x∗

L

Figure 7.3.4 Deriving Lobatchevsky’s formula.
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Recall the half-angle formula

tan(θ/2) = tan(θ)
sec(θ) + 1 .

According to Figure 7.3.4, tan(θ) = r/s, where r is the Euclidean radius of
the circle containing the hyperbolic line L. Furthermore, sec(θ) = (x+ r)/s, so

tan(θ/2) = r

x+ r + s
. (1)

We may express x and r in terms of the hyperbolic distance d from 0 to x. In
Exercise 7.3.2 we prove the hyperbolic distance from 0 to x in (Dk,Hk) is

d = s ln
(
s+ x

s− x

)
so that

x = s · e
d/s − 1
ed/s + 1

.

Express r in terms of d by first expressing it in terms of x. Note that segment
xx∗ is a diameter of the circle containing L, where x∗ = −1

kx is the point symmetric
to x with respect to the circle at infinity. Thus, r is half the distance from x to
x∗:

r = −1 + kx2

2kx .

Replacing k with −1/s2, we have

r = s2 − x2

2x .

One checks that after writing x in terms of d, r is given by

r = 2sed/s

e2d/s − 1
.

Substitute this expression for r into the equation labeled (1) in this proof, and
after a dose of satisfactory simplifying one obtains the desired result:

tan(θ/2) = e−d/s.

Since s = 1/
√
|k| this completes the proof. �

Parallax. If a star is relatively close to the Earth, then as the Earth moves
in its annual orbit around the Sun, the star will appear to move relative to the
backdrop of the more distant stars. In the idealized picture that follows, e1 and
e2 denote the Earth’s position at opposite points of its orbit, and the star s is
orthogonal to the plane of the Earth’s orbit. The angle p is called the parallax,
and in a Euclidean universe, p determines the star’s distance from the Sun, D, by
the equation D = d/ tan(p), where d is the Earth’s distance from the Sun.
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d

D

p

e1

e2

Sun s

We may determine p by observation, and d is the radius of Earth’s orbit around
the Sun (d is about 8.3 light-minutes.) In practice, p is quite small, so a working
formula is D = d

p . The first accurate measurement of parallax was recorded in
1837 by Friedrich Bessel (1784-1846) . He found the stellar parallax of 0.3 arc
seconds (1 arc second = 1/3600◦) for star 61 Cygni, which put the star at about
10.5 light-years away.

If we live in a hyperbolic universe with curvature k, a detected parallax puts
a bound on how curved the universe can be. Consider Figure 7.3.5. As before,
e1 and e2 represent the position of the Earth at opposite points of its orbit, so
that the distance between them is 2d, or about 16.6 light-minutes. Assume star
s is on the positive real axis and we have detected a parallax p, so that angle
∠e2se1 = 2p.

e1 s

e2

α

2p
2d

a
u

Figure 7.3.5 A detected parallax in a hyperbolic universe puts a bound on its
curvature

The angle α = ∠e1e2s in Figure 7.3.5 is less than the angle of parallelism θ =
∠e1e2u. Noting that tan(x) is an increasing function and applying Lobatchevsky’s
formula it follows that

tan(α/2) < tan(θ/2) = e−
√
|k|2d.

We may solve this inequality for |k|:

tan(α/2) < e−
√
|k|2d

ln(tan(α/2)) < −
√
|k|2d ln(x) is increasing[

ln(tan(α/2))
2d

]2
> |k|. x2 is decreasing for x < 0

To get a bound for |k| in terms of p, note that α ≈ π/2 − 2p (the triangles
used in stellar parallax have no detectable angular deviation from 180◦), so

|k| <
[

ln(tan(π/4− p))
2d

]2
.
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We remark that for values of p near 0, the expression ln(tan(π/4 − p)) has
linear approximation equal to −2p, so a working bound for k, which appeared in
Schwarzschild’s 1900 paper [27], is |k| < (p/d)2.

Exercises
1. Prove that for k < 0, any transformation in Hk has the form

T (z) = eiθ
z − z0

1 + kz0z
,

where θ is any real number and z0 is a point in Dk.

2. Assume k < 0 and let s = 1/
√
|k|. Derive the following measurement formulas

in (Dk,Hk).
a. The length of a line segment from 0 to x, where 0 < x < s is

dk(0, x) = s ln
(
s+ x

s− x

)
.

Hint: Evaluate the integral by partial fractions.

b. The circumference of the circle centered at the origin with hyperbolic
radius r is c = 2πs sinh(r/s).

c. The area of the circle centered at the origin with hyperbolic radius r is
A = 4πs2 sinh2( r2s ).

3. Let’s investigate the idea that the hyperbolic formulas in Exercise 7.3.2 for
distance, circumference, and area approach Euclidean formulas when k → 0−.

a. Show that the hyperbolic distance dk(0, x) from 0 to x, where 0 < x < s,
approaches 2x as k → 0−.

b. Show that the hyperbolic circumference of a circle with hyperbolic radius
r approaches 2πr as k → 0−.

c. Show that the hyperbolic area of this circle approaches πr2 as k → 0−.

4. Triangle trigonometry in (Dk,Hk).
Suppose we have a triangle in (Dk,Hk) with side lengths a, b, c and angles

α, β, and γ as pictured in Figure 5.4.11. Suppose further that s = 1/
√
|k|.

a. Prove the hyperbolic law of cosines in (Dk,Hk):

cosh(c/s) = cosh(a/s) cosh(b/s)− sinh(a/s) sinh(b/s) cos(γ).

b. Prove the hyperbolic law of sines in (Dk,Hk):

sinh(a/s)
sin(α) = sinh(b/s)

sin(β) = sinh(c/s)
sin(γ) .

5. As k < 0 approaches 0, the formulas of hyperbolic geometry (Dk,Hk) approach
those of Euclidean geometry. What happens to Lobatchevsky’s formula as k
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approaches 0? What must be the angle of parallelism θ in the limiting case?
Is this value of θ independent of d?

6. Bessel determined a parallax of p = .3 arcseconds for the star 61 Cygni.
Convert this angle to radians and use it to estimate a bound for the curvature
constant k if the universe is hyperbolic. The units for this bound should be
light years−2 (convert the units for the Earth-Sun distance to light-years).

7. The smallest detectable parallax is determined by the resolving power of our
best telescopes. Search the web to find the smallest detected parallax to date,
and use it to estimate a bound on k if the universe is hyperbolic.

7.4 The Family of Geometries (Xk, Gk)
A strong connection exists between the family (P2

k,Sk) of elliptic geometries with
curvature k > 0 and the family (Dk,Hk) of hyperbolic geometries with curvature
k < 0. The two families sport identical descriptions of the transformation group,
identical descriptions of straight lines, identical arc-length and area formulas, as
well as identical formulas for the area of a triangle.

We may symbolize this connection with the following description of an infinite
family of geometries, one for each real number k. This general description will
allow us to elegantly express some important features common to hyperbolic,
Euclidean, and elliptic geometry.

Definition 7.4.1 For each real number k the geometry (Xk, Gk) has space

Xk =


Dk if k < 0;
C if k = 0;
P2
k if k > 0,

and group of transformations Gk consisting of all Möbius transformations of the
form

T (z) = eiθ
z − z0

1 + kz0z
,

where θ ∈ R and z0 is a point in Xk. Moreover, the unique line through two points
p and q in (Xk, Gk) is the unique cline through the points p, q, and −1/(kp). A
smooth curve r : [a, b]→ Xk has arc-length given by

L(r) =
∫ b

a

2|r′(t)|
1 + k|r(t)|2 dt.

The area of a polar region R in (Xk, Gk) is given by

A(R) =
∫∫

R

4r
(1 + kr2)2 drdθ.

♦

As we have seen, these geometries manifest themselves in strikingly different
ways. If k > 0, the sum of the angles of a triangle must be greater than π; and
if k < 0 the sum of the angles of a triangle must be less than π. If k > 0 the
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space Xk = P2
k has finite area; if k < 0, Xk = Dk has infinite area. If k > 0 the

circumference of a circle with radius r is less than 2πr; if k < 0 the circumference
is greater than 2πr.

What about when k = 0? We may check that (X0, G0) corresponds to
Euclidean geometry, though with a scaled metric. In particular, lines in (X0, G0)
correspond to Euclidean lines (since k = 0, −1/(kp) = ∞, so the unique line
through p and q is the Euclidean line), and when k = 0 the arc-length is simply
twice the usual Euclidean arc-length. So while we are scaling distances in (X0, G0),
Euclidean geometry applies: triangles are Euclidean triangles and have angle sum
equal to 180◦. Triangles with a right angle are Euclidean right triangles and
satisfy the Pythagorean theorem.

Thus, we treat (Xk, Gk) as one big family of geometries. The sign of k dictates
the type of geometry we have, and the magnitude of k dictates the radius of the
disk in which we model the geometry (unless k = 0 in which case the space is C).
Morevoer, Euclidean geometry (X0, G0) marks the edge of the knife from which
we move into a hyperbolic world is k drops below 0, and into an elliptic world if k
rises above 0.

We now summarize some results established in the previous sections and
emphasize key features common to all (Xk, Gk).

First and foremost, we note that arc-length is an invariant function of (Xk, Gk)
and that the arc-length ensures that the shortest path from p to q in (Xk, Gk)
is along the line between them. We have discussed these facts in the cases
k = −1, 0, 1, and the result holds for arbitrary k. So, the arc-length formula
provides a metric on (Xk, Gk): Given p, q ∈ Xk, we define dk(p, q) to be the length
of the shortest path from p to q. The circle in (Xk, Gk) centered at p through q
consists of all points in Xk whose distance from p equals dk(p, q).

Theorem 7.4.2 For all real numbers k, (Xk, Gk) is homogeneous and isotropic.

Proof. Given any point p in Xk, the transformation T (z) = z−p
1+kpz in Gk maps

p to the origin. So all points in Xk are congruent to 0. By the group structure
of Gk it follows that any two points in Xk are congruent, so the geometry is
homogeneous.

To show (Xk, Gk) is isotropic we consider three cases.
If k < 0 then (Xk, Gk) models hyperbolic geometry on the open disk with

radius s = 1/
√
|k|. As such, Gk contains the sorts of Möbius transformations

discussed in Chapter 5 and pictured in Figure 5.1.6. In particular, for any point
p ∈ Dk, Gk contains all elliptic Möbius transformations that swirl points around
type II clines of p and −1/(kp), the point symmetric to p with respect to the
circle at infinity. These maps are preciley the rotations about the point p in this
geometry: they rotate points in Xk around cicles centered at p.

If k = 0, then transformations in G0 have the form T (z) = eiθ(z − z0).
Now, rotation by angle θ about the point p in the Euclidean plane is given by
T (z) = eiθ(z − p) + p. Setting z0 = p − pe−iθ we see that this rotation indeed
lives in G0.

If k > 0 then (Xk, Gk) models elliptic geometry on the projective plane with
radius s = 1/

√
k. As such, for each p ∈ Xk, Gk contains all elliptic Möbius

transformations that fix p and pa, the point antipodal to p with respect to the
circle with radius s. Such a map rotates points around type II clines with respect
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to p and pa. Since these type II clines correspond to circles in Xk centered at the
fixed point, it follows that Gk contains all rotations.

Thus, for all k ∈ R, (Xk, Gk) is isotropic. �

Theorem 7.4.3 Suppose k is any real number, and we have a triangle in (Xk, Gk)
whose angles are α, β, and γ and whose area is A. Then

kA = (α+ β + γ − π).
Proof of this tidy result has already appeared in pieces (see Exercise 1.2.2,

Lemma 7.2.2, and Lemma 7.3.1); we emphasize that this triangle area formula
reveals the locally Euclidean nature of all the geometries (Xk, Gk): a small triangle
(one with area close to 0) will have an angle sum close to 180◦. Observe also that
the closer |k| is to 0, the larger a triangle needs to be in order to detect an angle
sum different from 180◦. Of course, if k = 0 the theorem tells us that the angles
of a Euclidean triangle sum to π radians.

Theorem 7.4.4 Suppose a convex n-sided polygon (n ≥ 3) in (Xk, Gk) has
interior angles αi for i = 1, 2, . . . , n. The area A of the n-gon is related to its
interior angles by

kA =
( n∑
i=1

αi

)
− (n− 2)π.

Proof. A convex n-gon can be divided into n− 2 triangles as in Figure 7.4.5.
Observe that the area of the n-gon equals the sum of the areas of these triangles.

∆1 ∆2

∆3

∆4

∆5∆6

Figure 7.4.5 Splitting an n-gon into n− 2 triangles in the case n = 8.
By Theorem 7.4.3, the area Ai of the ith triangle ∆i is related to its angle

sum by
kAi = (

∑
angles in ∆i)− π.

Thus,

kA =
n−2∑
i=1

kAi

=
n−2∑
i=1

(
∑

angles in ∆i − π).



SECTION 7.4. THE FAMILY OF GEOMETRIES (XK , GK) 161

Now, the total angle sum of the n− 2 triangles equals the interior angle sum
of the n-gon, so it follows that

kA =
( n∑
i=1

αi

)
− (n− 2)π.

This completes the proof. �

Lemma 7.4.6 Suppose k ∈ R, s = 1√
|k|

and 0 < x < s is a real number (if k = 0,
we just assume 0 < x). In (Xk, Gk), the circle centered at 0 through x has area

4πx2

1 + kx2 .

Proof. Consider the circle centered at the origin that goes through the point
x on the positive real axis, where 0 < x < s. The circular region matches the
polar rectangle 0 < θ < 2π and 0 < r < x, so the area is given by∫ 2π

0

∫ x

0

4r
(1 + kr2)2 drdθ.

Evaluating this integral gives the result, and the details are left as an exercise. �
Theorem 7.4.7 Unified Pythagorean Theorem. Suppose k ∈ R, and we
have a geodesic right triangle in (Xk, Gk) whose legs have length a and b and
whose hypotenuse has length c. Then

A(c) = A(a) +A(b)− k

2πA(a)A(b),

where A(r) denotes the area of a circle with radius r as measured in (Xk, Gk).

Proof. Suppose k ∈ R. If k = 0 the equation reduces to c2 = a2 + b2, which
is true by the Pythagorean Theorem 1.2.1! Otherwise, assume k 6= 0 and let
s = 1√

|k|
, as usual. Without loss of generality we may assume our right triangle

is defined by the points z = 0, p = x, and q = yi, where 0 < x, y < s. By
construction, the legs zp and zq are Euclidean segments, and ∠pzq is right.

Let a = dk(z, p), b = dk(z, q), and c = dk(p, q). By Lemma 7.4.6,

A(a) = 4πx2

1 + kx2 , and A(b) = 4πy2

1 + ky2 .

To find A(c), we first find dk(p, q). By invariance of distance,

dk(p, q) = dk(0, |T (q)|),

where T (z) = z−p
1+kpz . Let t = |T (q)| = |yi−x|

|1+kxyi| , which is a real number.
Now, A(c) is the area of a circle with radius c, and the circle centered at 0

through t has this radius, so

A(c) = 4πt2

1 + kt2
.

Using the fact that t2 = x2+y2

1+k2x2y2 , one can now check by direct substitution that

A(c) = A(a) +A(b)− k

2πA(a)A(b).
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�
While we have proved the theorem, it feels a bit like we have missed the best

part - discovery of the relationship. For more on this, we encourage the reader to
consult [20].

Example 7.4.8 Detecting curvature with triangles.

Suppose a two-dimensional bug in (Xk, Gk) walks along a line for a > 0
units, turns left 90◦, and walks on a line for another a units, thus creating
a right triangle with legs of equal length. Let c denote the hypotenuse of
this triangle. The diagram below depicts such a route, in each of the three
geometry types. For convenience, we assume the journey begins at the
origin and proceeds first along the positive real axis.

a
c

a

p

0 x
θ

p

0 xa

a
c

θ

a
c

a

p

0 x
θ

(a) (b) (c)

It turns out the value of c as a function of a can reveal the curvature
k of the geometry. If k = 0 the Pythagorean theorem tells us that
c2 = 2a2. For k < 0, the hyperbolic law of cosines (Exercise 7.3.4) tells
us that cosh(

√
|k|c) = cosh2(

√
|k|a). For k > 0, the elliptic law of cosines

(Exercise 7.2.5) tells us that cos(
√
kc) = cos2(

√
ka). We may solve each of

these equations for c, using the fact that a and c are positive, to give us c
as a function of a and the curvature k. We have plotted these functions
for k = −1, 0, 1 below. When k < 0 the length of the hypotenuse of such a
triangle is slightly longer than that predicted by the Euclidean formula
(the Pythagorean theorem); when k > 0 the length is smaller than the
length predicted by the Euclidean formula.
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We close by summarizing measurement formulas for these geometries. Except
for the case k = 0 these formulas were proved in the exercises of the previoius
two sections. The case k = 0 is tackled in Exercise 7.4.1.
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Measurement Formulas in (Xk, Gk).

Suppose k ∈ R, s = 1√
|k|

and 0 < x < s is a real number (with the
convention that if k = 0 we simply require 0 < x).

• In (Xk, Gk), the distance from 0 to x is given by

dk(0, x) =


s ln

(
s+x
s−x

)
if k < 0;

2x if k = 0;
2s arctan(x/s) if k > 0.

• A circle with radius r as measured in (Xk, Gk) has area A(r) given
by

A(r) =


4πs2 sinh2( r2s ) if k < 0;
πr2 if k = 0;
4πs2 sin2( r2s ) if k > 0,

• A circle with radius r as measured in (Xk, Gk) has circumference
C(r) given by

C(r) =


2πs sinh(r/s) if k < 0;
2πr if k = 0;
2πs sin(r/s) if k > 0.

Exercises
1. Check that the measurement formulas in (Xk, Gk) are correct when k = 0.

In particular, show that d0(0, x) = 2x for any x > 0 on the real axis, and
that a circle with radius r as measured in (X0, G0) has area A(r) = πr2 and
circumference C(r) = 2πr.

2. Complete the proof of Lemma 7.4.6.

3. Use Definition 7.1.4 to prove that for all real numbers k, the curvature of
(Xk, Gk) is indeed equal to k. Hint: Tackle three cases: k < 0, k = 0, and
k > 0.

4. Suppose an intrepid team of two-dimensional explorers sets out to determine
which 2-dimensional geometry is theirs. Their cosmologists have told them
there world is homogeneous, isotropic, and metric, so they believe that the
geometry of their universe is modeled by (Xk, Gk) for some real number k.
They carefully measure the angles and area of a triangle. They find the angles
to be 29.2438◦, 73.4526◦, and 77.2886◦, and the area is 8.81 km2. Which
geometry is theirs? What is the curvature of their universe?

5. Prove that in (Xk, Gk) the derivative of area with respect to r is circumference:
d
dr [A(r)] = C(r).
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6. Suppose a two-dimensional bug in (Xk, Gk) traces the right triangle route
from 0 to p as depicted in Example 7.4.8. Argue that for a given value of a,
the hyperbolic hypotenuse length exceeds the Euclidean hypotenuse length,
which exceeds the elliptic hypotenuse length. Hint: One might prove that for
all k, when a = 0, c = 0 and dc

da |a=0 =
√

2; and then show that for a > 0, d
2c
da2

is positive for negative values of k, and it is negative for positive values of k.

7. Suppose a team of two-dimensional explorers living in (Xk, Gk) travels 8 units
along a line. Then they turn right (90◦) and travel 8 units along a line. At
this point they find they are 12 units from their starting point. Which type of
geometry applies to their universe? Can they determine the value of k from
this measurement? If so, what is it?

8. Repeat the previous exercise using the measurements a = 8 units and c = 11.2
units.

9. Suppose a team of two-dimensional explorers living in (Xk, Gk) finds them-
selves at point p. They travel 8 units along a line to a point z, turn right
(90◦) and travel another 8 units along a line to the point q. At this point
they measure ∠pqz = .789 radians. Which type of geometry applies to their
universe? Can they determine the value of k from this measurement? If so,
what is it?

10. Suppose a team of two-dimensional explorers living in (Xk, Gk) tethers one of
their team to a line 18 scrambles long (a scramble is the standard unit for
measuring length in this world - and 24 scrambles equals one tubablast). They
swing the volunteer around in a circle, and though he laughs maniacally, he is
able to record with confidence that he traveled 113.4 scrambles. Assuming
these measurements are correct, which type of geometry applies to their
universe? Can they determine the value of k from these measurements? If so,
what is it?

7.5 Surfaces
Back in Chapter 1 we motivated the study of non-Euclidean geometry with a
question in cosmology: What is the shape of the universe? We discussed the
idea that different shapes inherit different types of geometry. Indeed, the rules of
geometry are different on a sphere than on a flat plane. In this section we take a
break from geometry in order to discuss the shapes themselves.

In topology one studies those features of a space that remain unchanged if the
space is stretched or otherwise continuously deformed. Such features of a space
are called topological features.

The features of a space that do change under such deformations are geometric
features. For instance, as a ball is inflated its volume, curvature, and surface
area change; these are geometric properties. On the other hand, no matter how
big or lumpy the ball gets, or how it is stretched (unless it pops!), a loop drawn
on the surface of the ball separates the surface into two disjoint pieces. This is
a topological property of the ball. A second topological property of a space is
whether any loop drawn on it can be continuously contracted (while staying in the
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space) to a point. The sphere also has this feature. Nothing about the sphere’s
shape prevents a loop from shrinking on the surface to a point.

Figure 7.5.1 The sphere and torus are topologically distinct.
On the surface of a donut there are loops one can draw that do not separate

the surface into disjoint pieces. The loop that goes around the donut like an
armband in Figure 7.5.1 is one such loop. Furthermore, this loop cannot be
continuously contracted to a point while staying on the surface. This suggests
the surface of a ball and the surface of a donut are topologically different shapes.

The sphere is an example of a simply connected space because any loop
drawn on the surface can be contracted to a point. The torus is an example of
a multiconnected space because there exist loops in the torus that cannot be
contracted to a point.

Roughly speaking, two spaces are topologically equivalent, or homeomorphic,
if one can be continuously deformed to look like the other. For instance, a circle
is topologically equivalent to a square. One can be mapped onto the other via
a homeomorphism: a continuous bijection between the objects that has a
continuous inverse. One homeomorphism is suggested in the following example.

Example 7.5.2 A circle is homeomorphic to a square.

Construct a homeomorphism as follows. Assume the square and circle are
concentric as shown below, and that z0 is the center of the circle. Then, for
each point z on the square, define T (z) to be the point on the circle through
which the ray −→z0z passes. One can show that T is a homeomorphism: it is
a 1-1 and onto function that is continuous, and its inverse is continuous as
well.

zo

T (z)
z

We are quickly heading into the realm of topology, and must resist the
temptation to dive headlong and formally into this rich subject. In this text
we restrict our focus to a whirlwind tour of topological tools that are used to
investigate possible shapes for two- and three-dimensional universes. We encourage
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the reader interested in a more formal approach to the subject to consult any
number of good texts, including [9].

Our candidate universes are examples of manifolds. A topological n-manifold
is a space with the feature that each point in the space has a neighborhood that
looks like a patch of Rn. In cosmology, the spatial section of space-time is assumed
to be a 3-manifold, and when we ask about the shape of the universe, we are
asking about the shape of this 3-manifold. In this section we focus on 2-manifolds.

A bit more formally, Rn consists of all n-tuples of real numbers p = (x1, x2, . . . , xn).
The open n-ball centered at a point p in Rn with radius r > 0, denoted Bn(p, r),
is the set

Bn(p, r) = {x ∈ Rn | |x− p| < r},

where |x− p| is the Euclidean distance between the points x and p.
For instance, an open 1-ball is an open interval in R. The open 2-ball B2(z0, r)

consists of all points z in C such that |z − z0| < r. The open 3-ball B3(p, r)
consists of all points in R3 inside the sphere centered at p with radius r.

pp− r p+ r

r

z0
p

r

Figure 7.5.3 Open n-balls for n = 1, 2, 3.
A topological n-manifold is a space X with the feature that each point in

X has a neighborhood that is homeomorphic to an open n-ball.
A circle is an example of a 1-manifold: each point on a circle has a neighborhood

homeomorphic to an open interval. The surface of a sphere is a 2-manifold: each
point on the sphere has a neighborhood that is homeomorphic to an open 2-ball.

Example 7.5.4 Some 2-manifolds.

a. Let S consist of parallel planes in R3. In particular, let S = {(x, y, z) ∈
R3 | z = 0 or z = 1} as in part (a) of the following diagram. Each point
in S has a neighborhood of points that is an open 2-ball.

s

0

z

(a) (b)

b. The open unit disk D = {z ∈ C | |z| < 1} is a 2-manifold. Each
point in D has a neighborhood that is an open 2-ball in the plane. In
particular, if |z| = r < 1, let s = 1− r. Then B2(z, s) does the trick.
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c. The flat torus. Consider the flat torus of chapter 1, which has been
redrawn in Figure 7.5.5. It consists of all points in a rectangle drawn in
the Euclidean plane, with the additional feature that each point on the
top edge is identified with the point on the bottom edge having the same
x-coordinate; and each point on the left edge is identified with the point on
the right edge having the same y-coordinate. In Figure 7.5.5 we indicate
this edge identification with oriented labels: the a edges get identified by
matching the arrow orientations, as do the b edges.

Each point in the flat torus has a neighborhood homeomorphic to an
open 2-ball.

If a point p is not on an edge, as in Figure 7.5.5, then by choosing a
radius small enough, there is an open 2-ball about the point that misses
the edges.

If a point q is on an edge but not at a corner, then by choosing a
radius small enough, there is an open 2-ball about the point that misses
the corners. This open 2-ball consists of parts of two open 2-balls from R2.
Because of the edge identification, these open 2-ball halves come together
to form a perfect open 2-ball about the point.

If a point u is at a corner of the rectangle, there is an open 2-ball
about the point that consists of parts of four different open 2-balls from
R2. Because of the edge identification, these four “quarter balls” come
together to form a single open 2-ball of points around the corner point.

a

a

b bp

q u

b

a

up
q

Figure 7.5.5 The flat torus is a 2-manifold as well as a surface

Definition 7.5.6 A surface is a closed, bounded, and connected topological
2-manifold. ♦

Of the 2-manifolds in Example 7.5.4, only the third is a surface according to
this definition. A set in Rn is bounded if it lives entirely within some open n-ball
of finite radius. The parallel planes manifold extends infinitely far away from
the origin in R3 so this manifold is not bounded. This manifold is not connected
either. Informally, a space is connected if it has just one piece. The parallel planes
manifold has two distinct pieces (the two planes) that are separated in space, so it
is not connected. The open unit disk D is bounded and connected, but not closed
as a set in R2. A set S in Rn is closed if it has the following feature: if {zk} is a
sequence of points in S that converges to a point z, then z is also in S.

To see that D is not closed, consider the sequence { 1
2 ,

2
3 ,

3
4 ,

4
5 , . . .}. Each point

in this sequence lives in D, but the limit of the sequence, which is 1, does not.
The torus, on the other hand, is closed, bounded, and connected, so we call it a
surface. We note that another topological term, compactness, is often used when
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discussing surfaces. A space living in Rn is compact if and only if it is closed and
bounded. Thus, for us, a surface is a compact, connected 2-manifold.

Rather than concern ourselves with a formal development of these topological
concepts, we take with us this informal introduction to help us to pursue the
construction of surfaces. It turns out that all surfaces can be built from the three
venerable surfaces in Figure 7.5.7 by a process called the connected sum.

Figure 7.5.7 The sphere S2, the torus T2, and the projective plane P2.

Connected Sum. If X1 and X2 are surfaces, the connected sum surface,
denoted X1#X2, is obtained as follows:

1. Remove an open 2-ball from X1 and an open 2-ball from X2;

2. Connect the boundaries of these open 2-balls with a cylinder.

Note that since Xi is a surface, each point in each space has a neighborhood
homeomorphic to an open 2-ball, so we may always achieve the connected sum
of two surfaces. The result is a new surface: it is still closed, bounded, and
connected, and each point still has an open neighborhood homeomorphic to an
open 2-ball.

Figure 7.5.8 Some connected sums.

Example 7.5.9 Some connected sums.

Let T2 denote the torus surface in R3 and S2 denote the sphere, as usual.
Figure 7.5.8 depicts two connected sums: T2#T2, and S2#T2. The surface
T2#T2 is called the two-holed torus, and it is topologically equivalent
to the surface labeled H2 in Figure 7.5.10. One can shrink the length
dimension of the connecting cylinder to make the one look like the other.
The surface S2#T2 is homeomorphic to the torus T2. To see this, observe
that if one removes an open-2 ball from a sphere and attaches one end of a
cylinder to the sphere along the boundary of the removed disk, the result
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is homeomorphic to a closed disk, as suggested in the following diagram.
So, if one removes an open 2-ball from a surface X and then caps the
hole with this sphere-with-cylinder shape, the net effect is patching the
hole. In the arithmetic of connected sums, the sphere plays the role of 0:
S2#X = X for any surface X.

For each integer g ≥ 1, the handlebody surface of genus g, denoted Hg,
is defined as

Hg =

g copies︷ ︸︸ ︷
T2#T2# · · ·#T2 .

The surface Hg gets its name from the fact that it is topologically equivalent
to a sphere with g handles attached to it. For this reason, we set H0 = S2. A few
handlebody surfaces are pictured in Figure 7.5.10.

H0 H2

H4

Figure 7.5.10 Some handlebody surfaces.
For each integer g ≥ 1, define the cross-cap surface of genus g by

Cg =

g copies︷ ︸︸ ︷
P2#P2# · · ·#P2 .

A cross-cap is the space obtained by removing an open 2-ball from the
projective plane P2. The cross-cap surface Cg is topologically equivalent to a
sphere with g open 2-balls removed and replaced with cross-caps.

The surface C1 is the projective plane. This space does not embed in R3 as
the handlebody surfaces do, but it can be represented as a disk with antipodal
points identified, as we did in Chapter 6. Figure 7.5.11 depicts the connected sum
C1#C1. In Figure 7.5.11(a), we have removed an open ball from each copy of
C1. The boundary circles of these open 2-balls must be joined, and we indicate
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this by orienting the boundary circles and giving each one the same label of c.
In Figure 7.5.11(b), we have sliced open each copy of C1 at the vertex to which
the c loops are joined. The c loops are now edges that we identify together in
Figure 7.5.11(c). Thus, we may view C2 as the square with edge identifications as
indicated in part (c) of the figure. It turns out this space C2 is homeomorphic to
the Klein bottle, a famous surface we consider shortly.

c

a2

a2

c

a1

a1
(a)

a2

a2

c

a1

a1

c

(b)

a1

a2

a2 a1c

(c)

Figure 7.5.11 Constructing C2.

Polygonal Surfaces
Our representation of C2 is an example of a polygonal surface. To build a
polygonal surface, start with a finite number of polygons having an even number
of edges and then identify edges in pairs.

If the surface is built from a single polygon, the edge identifications of the
polygon can be encoded in a boundary label. Each edge of the polygon gets
assigned a letter and an orientation. Edges that are identified have the same
letter, and we obtain a boundary label by traversing the boundary of our polygon
in the counter-clockwise direction (by convention) and recording the letters we
encounter, with an exponent of +1 if our walk is in the direction of the oriented
edge, and an exponent of -1 if our walk is in the opposite direction of the oriented
edge. For instance, a boundary label for the surface C2 found in Figure 7.5.11 is
a1a1a2a2. Furthermore, we may inductively show that by repeating the connected
sum operation of Figure 7.5.11 to Cg−1#C1, the surface Cg can be represented as
a 2g-gon having boundary label

a1a1a2a2 · · · agag.

It turns out that all surfaces can be constructed this way, an important and
useful result. We have seen that the torus can be constructed as a polygonal surface:
take a rectangle and identify the edges according to the boundary label aba−1b−1.
In Figure 7.5.13 we demonstrate that the 2-holed torus can be represented as a
regular octagon with boundary label

(a1b1a
−1
1 b−1

1 )(a2b2a
−1
2 b−1

2 ).
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In general, for g ≥ 1 the surface Hg can be represented by a regular 4g-gon having
boundary label

(a1b1a
−1
1 b−1

1 )(a2b2a
−1
2 b−1

2 ) · · · (agbga−1
g b−1

g ).

The remarkable theorem here is that the handlebody surfaces and the cross-cap
surfaces account for all possible surfaces, without redundancy.

Theorem 7.5.12 Any surface is homeomorphic to the sphere S2, a handlebody
surface Hg with g ≥ 1, or a crosscap surface Cg with g ≥ 1. Moreover, no two
surfaces in this list are homeomoprhic to each other.

Two proofs of this theorem are floating around the literature now. The classic
proof, which makes use of cell divisions, can be found, for instance, in [9]. The
new proof, due to John Conway, bypasses the artificial constructs in the classic
proof, and can be found in [12].

To summarize, we have two ways to think about surfaces. First, the classifi-
cation theorem above can be restated as follows: any surface is homeomorphic
to the sphere, the sphere with some number of handles attached, or the sphere
with some number of cross-caps attached. Second, any surface can be constructed
from a 2m-gon with its edges identified in pairs, for some m ≥ 1.

b2

b2

a2 a2
c

b1b1

a1

a1

c

(a)

a2b2

a2

b2

c

a1b1

c

a1

b1

(b)

c

a2

b2

a2

b2 a1

b1

a1

b1

(c)

Figure 7.5.13 H2 constructed from an octagon.

Characterizing a surface
If somebody throws a surface at us, how do we know which one we’re catching?
One way to characterize a surface is to determine two particular topological
invariants: its orientability status and its Euler characteristic. Let’s discuss what
these features of a surface are.

Orientability status

The Möbius strip is obtained from a rectangle by identifying the left and right
edges with a twist:
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Figure 7.5.14 A Möbius strip.
Notice that a Möbius strip has an orientation-reversing path. A clock rotating

clockwise, if it heads along the Möbius strip, will eventually return to its starting
place to find that it is now rotating counterclockwise.

start

finish

A surface is called non-orientable if it contains a Möbius strip. If a surface
does not contain a Möbius strip then it is orientable. The Möbius strip itself
is not a surface as we’ve defined it because it has an edge. Points on this edge
don’t have any neighborhoods that look like open 2-balls (they look more like half
balls). But the Klein bottle in the following example is a non-orientable surface.

Example 7.5.15 The Klein bottle.

The Klein bottle looks a lot like the torus, but there’s a twist. The top
and bottom edges are identified as they were for the torus, but the left
and right edges are oriented oppositely. More formally, it is the polygonal
surface obtained from a square with boundary label aba−1b, and the Klein
bottle is denoted by K2.

Why is the Klein bottle non-orientable? A bug leaving the screen on
the right near the top would reappear on the left near the bottom. But
take a closer look, the bug has become mirror-reversed.

a

b

a

b

This orientation-reversing path exists because of a Möbius strip lurking
in the Klein bottle. (Conisder, for instance, the thin horizontal strip
formed by the dashed segments in the figure.)

The same bug living in the torus would never find itself mirror reversed
as a result of traveling in its surface. The torus is orientable.

A surface’s orientability status is a topological invariant. This means that if
S and T are homeomorphic surfaces then they must have the same orientability
status. Notice that there exists a Möbius strip in each Cg (take a thin strip from
the middle of one a1 edge to the middle of the other), so that all cross-cap surfaces
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are non-orientable. On the other hand, all the handlebody surfaces Hg (g ≥ 0)
are orientable.

Euler Characteristic

In addition to an orientability status, each surface has attached to it an integer
called the Euler characteristic. The Euler characteristic is a topological invariant,
and it can be calculated from a cell division of a surface, which is a kind of tiling
of the surface by planar faces. Let’s make this more precise.

An n-dimensional cell, or n-cell, is a subset of a space whose interior is
homeomorphic to an open n-ball in Rn. For instance, a 1-cell, also called an edge,
is a set whose interior is homeomorphic to an open interval; a 2-cell, or face, is a
set whose interior is homeomorphic to an open 2-ball in the plane. We call points
in a space 0-cells. A 0-cell is also called a vertex (plural vertices).

Definition 7.5.16 A cell complex C is a collection of cells in some space subject
to these two conditions:

1. The interiors of any two cells in the complex are disjoint

2. The boundary of each cell is the union of lower-dimensional cells in C.

A cell complex C is called an n-dimensional cell complex, or n-complex,
if it contains an n-cell, but no higher-dimensional cells. ♦

Example 7.5.17 Some cell complexes.

A 1-complex is commonly called a graph: it consists of vertices and edges.
At each end of an edge is a vertex (possibly the same vertex at each end),
and no two edges intersect in their interiors. The left side of the following
diagram shows a 1-complex with seven 0-cells and five 1-cells. To the right
is a 2-complex with one 0-cell and one 2-cell. The entire boundary of the
2-cell is attached to the single 0-cell, thus creating a well-known surface,
the 2-sphere.

Example 7.5.18 The Platonic solids..

The five Platonic solids can be viewed as 2-complexes if we ignore the
space bounded by their faces. We’ve pictured all five, and given vertex,
edge, and face counts for each one.

Of course, the region bounded by the faces of each Platonic solid is
homeomorphic to an open 3-ball, so the Platonic solids can also be viewed
as 3-complexes; each solid having exactly one 3-cell.
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v=4, e=6, f=4
v=8,e=12,f=6

v=6, e=12,f=8

v=20,e=30,f=12
v=12,e=30,f=20

Definition 7.5.19 A cell division of a space X is a cell complex C that is
homeomorphic to X. ♦

For instance, each Platonic solid (viewed as a 2-complex) is a cell division of
S2. To construct a homeomorphism, map each point of the Platonic solid to a
point on a sphere by projection as suggested in Figure 7.5.20.

Figure 7.5.20 A dodecahedron and sphere are homeomorphic.

Example 7.5.21 Attempted cell divisions of H1.

Three cell divisions of the torus are pictured below, along with one failed
cell division. In each valid cell division, we count the number of faces,
edges, and vertices of the cell division. To make an accurate count, one
must take the edge identification into account.

(a) (b)

(c) (d)
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Cell division (a) has two vertices, six edges, and four faces. One vertex
is in the center of the rectangle, and the other vertex is in the corner
(remember, all four corners get identified to a single point). As for the
edges, four emanate from the center vertex, and we have two others: the
horizontal edge along the boundary of the rectangle (appearing twice), and
the vertical edge along the boundary (also appearing twice). Thus, the
edges of the rectangle are also edges of the cell division, so the faces in
this cell division are triangles, and there are four of them.

Cell division (b) has six vertices, eight edges, and two faces. There are
four vertices in the interior of the rectangle, one vertex on the horizontal
boundary of the rectangle, and one vertex on the vertical boundary. Notice
that the corner point of the rectangle is not a vertex of the cell division.
To count the edges, observe that four edges form the inner diamond, and
one edge leaves each vertex of the diamond, for a total of eight edges. The
boundary edges of the rectangle do not form edges in this cell division.
Counting faces, we have one inside the diamond and one outside the
diamond. Convince yourself that the region outside the diamond makes
just one face.

You can check that cell division (c) has one vertex in the center of the
rectangle, two edges (one is horizontal, the other is vertical), and one face.

The attempt (d) fails to be a cell division of the torus. Why is this? At
first glance, we have four vertices, four edges, and two faces. The trouble
here is the “face” outside the inner square. It is not a 2-cell - that is, its
interior is not homeomorphic to an open 2-ball. To see this, note that this
region contains a loop that does not separate the “face” into two pieces.
Can you find such a loop? Since no open 2-ball has this feature, the region
in question is not homeomorphic to an open 2-ball.

Definition 7.5.22 The Euler characteristic of a surface S, denoted χ(S), is

χ(S) = v − e+ f

where v, e, and f denote the number of 0-cells (vertices), 1-cells (edges), and
2-cells (faces), respectively, of a cell division of the surface. ♦

The Euler characteristic is well-defined. This means that different cell divisions
of the same surface will determine the same value of χ. Furthermore, this simple
number is a powerful topological invariant: If two surfaces have different Euler
characteristics then they are not homeomorphic. However, the Euler characteristic
alone doesn’t completely characterize a surface: if two surfaces have the same
Euler characteristic, they need not be homeomorphic.

The Euler characteristic of the sphere is 2. Each Platonic solid in Exam-
ple 7.5.18 is a cell division of S2, and a count reveals χ(S2) = 2.

The Euler characteristic of the torus T2 is 0. Each valid cell division in
Example 7.5.21 yields v − e+ f = 0.

Each polygonal surface induces a cell division of the surface. This cell division
has a single face, and after identifying the edges in pairs, the corners and edges of
the underlying polygon correspond to vertices and edges in the cell division of the
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surface. To determine the Euler characteristic of a polygonal surface, be careful
to make edge and vertex counts after the edge identifications.

Theorem 7.5.23 The handlebody surface Hg has Euler characteristic χ(Hg) = 2−
2g, for all g ≥ 0. The cross-cap surface Cg has Euler characteristic χ(Cg) = 2−g,
for all g ≥ 1.

Proof. We have already seen that the Euler characteristic of the sphere is 2, so
the result holds for H0. For g ≥ 1 consider the standard polygonal representation
of Hg as a 4g-gon with boundary label (a1b1a

−1
1 b−1

1 ) · · · (agbga−1
g b−1

g ). One checks
that all the corners come together at a single point, so our cell division of Hg has
a single vertex. For instance, consider the 2-holed torus in Figure 7.5.24. Starting
at the lower right-hand corner labeled (1), begin traversing the corner point in a
clockwise direction. After hitting the b1 edge near its initial point, one reappears
on the other b1 edge near its initial point. Keep circling the corner (according
to the sequence indicated) until you return to the starting point. Notice that
all eight corners are traversed before returning to the starting point. So the cell
division determined by the polygon will have a single vertex. Since the 4g edges
are identified in pairs, the cell division has 2g edges, and there is one face, the
interior of the polygon. Thus, χ(Hg) = 1− 2g + 1 = 2− 2g.

a1

b1

a2
b2

a2

b2
a1

b1

7

25

4

3

6 1

8

Figure 7.5.24 This cell division of H2 has a single vertex.
The cross-cap surface Cg can be represented by the polygonal surface ob-

tained by identifying the edges of a 2g-gon according to the boundary label
(a1a1) · · · (agag). Once again, all the corners come together at a single point in
the edge identification, and the number of edges in the cell division is half the
number of edges in the 2g-gon. So the cell division determined by the polygon
has one vertex, g edges, and one face. Thus, χ(Cg) = 2− g. �

In light of the previous theorem and the surface classification theorem, a surface
is uniquely determined by its orientability status and Euler characteristic. We
summarize the classification in the table below.
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Table 7.5.25 Classification of surfaces

χ orientable non-orientable
2 H0
1 C1
0 H1 C2
-1 C3
-2 H2 C4
-3 C5
-4 H3 C6
...

...
...

This completes our brief, somewhat informal foray into the topology of surfaces.
Again, several good sources provide a rigorous development of these ideas, in-
cluding [9]. In the next section we turn to the task of attaching geometry to a
surface.

b

a

c

c

b

a

(a)

b

a

b

d

c

a

d

c

(b)

b

a

d

c

c

d

b

a

(c)

b

c
d

e

d

c

e
a

b

a

(d)

Figure 7.5.26 Four polygonal surfaces.

Exercises
1. Find the Euler characteristic of each surface in Figure 7.5.26. Then determine

whether each surface is orientable or non-orientable. Then classify the surface.

2. Classify the polygonal surface built from a hexagon having boundary label
abca−1b−1c−1.

3. With the aid of Figure 7.5.27, convince yourself that the connected sum
of two projective planes is homeomorphic to the Klein bottle as defined in
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Example 7.5.15. At the top of Figure 7.5.27 there are two projective planes
(with boundary labels a1a1 and a2a2), each with a disk removed. In the
connected sum, join the boundaries of the removed disks, which can be
achieved by joining the s1 arcs together and the s2 arcs together. The b and
c edges in the first projective plane (and the d and e edges in the second
projective plane) indicate cuts we will make to the space, portrayed in the
subsequent pictures. Thus, by removing a disk from each projective plane,
and cutting as indicated by the b, c, d, and e edges, we obtain four rectangles
(topologically), all of whose edges get identified as indicated. Convince yourself
that by moving these rectangles around (either by rotation, or reflection about
a vertical or horizontal axis) we produce the Klein bottle.

4. What surface in our catalog do we obtain from the connected sum of a torus
and a projective plane? That is, what is H1#C1? Explain your answer.

5. Show that in the polygonal representation of Cg, all corner points come
together at a single point when the edges are identified.
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Figure 7.5.27 C2 is homeomorphic to the Klein bottle K2.
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7.6 Geometry of Surfaces
If you’ve got a surface in your hand, you can find a homeomorphic version of the
surface on which to construct hyperbolic geometry, elliptic geometry, or Euclidean
geometry. And the choice of geometry is unique: No surface admits more than
one of these geometries. As we shall see, of the infinitely many surfaces, all but
four admit hyperbolic geometry (two admit Euclidean geometry and two admit
elliptic geometry). Thus, if you randomly generate a constant curvature surface
for a two-dimensional bug named Bormit, Bormit will no doubt live in a world
with hyperbolic geometry.

Chances are, too, that a constant curvature surface cannot be embedded in
three-dimensional space. Only the sphere has this nice feature. In fact, if X is
any surface that lives in R3, like the handlebody surfaces in Figure 7.5.10, then it
must have at least one point with positive curvature. Why is this? The surface in
R3 is bounded, so there must be some sphere in R3 centered at the origin that
contains the entire surface. Shrink this sphere until it just bumps into the surface
at some point. The curvature of the surface at this point matches the curvature
of the sphere, which is positive.

We have seen that any surface is homeomorphic to a polygonal surface repre-
senting Hg or Cg, for some g, and we now show that each of these may be given a
homogeneous, isotropic and metric geometry (so that it has constant curvature).
A polygonal surface can only run into trouble homogeneity-wise where the corners
come together. Any point in the interior of the polygon has a nice 360◦ patch
of space about it, as does any point in the interior of an edge. However, if the
angles of the corners that come together at a point do not add up to 360◦, then
the surface has either a cone point or a saddle-point, depending on whether the
angle sum is less than or more than 360◦. As we saw in Chapter 1 (Exercises 1.3.5
and Example 1.3.7), in either case, we will not have a homogeneous geometry;
a two-dimensional bug would be able to distinguish (with triangles or circles) a
cone point from a flat point from a saddle point.

To smooth out such cone points or saddle points we change the angles at
the corners so that the angles do add up to 360◦. We now have the means for
doing this. If we need to shrink the corner angles, we can put the polygon in the
hyperbolic plane. If we need to expand the angles, we can put the polygon in the
projective plane.

Example 7.6.1 C3 admits hyperbolic geometry.

The standard polygonal representation of C3 = P2#P2#P2, is a hexagon
having boundary label a1a1a2a2a3a3, as in Figure 7.6.2. All six corners of
the hexagon come together at a single point. In the Euclidean plane, a
regular hexagon has corner angles equal to 120◦. To avoid a saddle point
when joining the six corners together, shrink the corner angles to 60◦. A
tiny copy of a regular hexagon in the hyperbolic plane will have corner
angles just under 120◦. If the hexagon grows so that its vertices approach
ideal points, its corner angles will approach 0◦. At some point, then, the
interior angles will be 60◦ on the nose. (We may construct this precise
hexagon as well. See Exercise 7.6.4.) If C3 is built from this hexagon living
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in the hyperbolic plane, the surface inherits the geometry of the space in
which it finds itself; that is, the surface C3 admits hyperbolic geometry, a
nice homogeneous, isotropic and metric geometry.

a2
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a3

a3

a1

a1

a2

a2

a3

a3

a1

a1

Figure 7.6.2 C3 admits hyperbolic geometry.

Example 7.6.3 An elliptic polygonal surface.

Revisiting Example 1.3.9, consider the hexagon with boundary label abcabc.
The six corners of this polygonal surface come together in groups of two.
These corners create cone points because the angle sum of the two corners
coming together is less than 360◦ in the Euclidean plane. We can avoid
cone points by putting the hexagon in P2. A small regular hexagon in the
projective plane will have corner angles just slightly greater than 120◦,
but we need each corner angle to expand to 180◦. We may achieve these
angles by expanding the hexagon until it covers the entire projective plane.
In fact, the surface of Example 1.3.9 is the projective plane, and it admits
elliptic geometry.

Theorem 7.6.4 Each surface admits one homogeneous, isotropic, and metric
geometry. In particular, the sphere (H0) and projective plane (C1) admit elliptic
geometry. The torus (H1) and Klein bottle (C2) admit Euclidean geometry. All
handlebody surfaces Hg with g ≥ 2 and all cross-cap surfaces Cg with g ≥ 3 admit
hyperbolic geometry.

The following section offers a more formal discussion of how any surface admits
one of our three geometries but we present an intuitive argument here.

The sphere and projective plane admit elliptic geometry by construction: The
space in elliptic geometry is the projective plane, and via stereographic projection,
this is the geometry on S2.

The torus and Klein bottle are built from regular 4-gons (squares) whose edges
are identified in such a way that all 4 corners come together at a point. In each
case, if we place the square in the Euclidean plane all corner angles are π/2, so
the sum of the angles is 2π, and our surfaces admit Euclidean geometry.
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Each handlebody surfaces Hg for g ≥ 2 and each cross-cap surfaces Cg for
g ≥ 3 can be built from a regular n-gon where n ≥ 6. Again, all n corners come
together at a single point. A regular n-gon in the Euclidean plane has interior
angle (n − 2)π/n radians, so the corner angles sum to (n − 2)π radians. This
angle sum exceeds 2π radians since n ≥ 6. Placing a small version of this n-gon in
the hyperbolic plane, the corner angle sum will be very nearly equal to (n− 2)π
radians and will exceed 2π radians, but as we expand the n-gon the corners
approach ideal points and the corner angles sum will approach 0 radians. Thus,
at some point the angle sum will equal 2π radians on the nose, and the polygonal
surface built from this precise n-gon admits hyperbolic geometry. Exercise 7.6.4
works through how to construct this precise n-gon.

Of course, one need not build a surface from a regular polygon. For instance,
the torus can be built from any rectangle in the Euclidean plane and it will
inherit Euclidean geometry. So while the type of geometry our surface admits is
determined, we have some flexibility where certain geometric measurements are
concerned. For instance, there is no restriction on the total area of the torus, and
the rectangle on which it is formed can have arbitrary length and width dimensions.
These dimensions would have a simple, tangible meaning to a two-dimensional bug
living in the surface (and might be experimentally determined). Each dimension
corresponds to the length of a geodesic path that would return the bug to its
starting point. A closed geodesic path in a surface is a path that follows along
a straight line (in the underlying geometry) that starts and ends at the same
point. Figure 7.6.5 shows three closed geodesic paths, all starting and ending
at a point near a bug’s house. The length of one path equals the width of the
rectangle, the length of another equals the length of the rectangle, and the third
follows a path that is longer than the first two.

Figure 7.6.5 A flat torus has many closed geodesic paths. The length of the
shortest closed geodesic path equals the length of the short side of the rectangle
on which the torus is modeled.

Even in hyperbolic surfaces, where the area of the surface is fixed (for a given
curvature) by the Gauss-Bonnet formula, which we prove shortly, there is freedom
in determining the length of closed geodesic paths.

Example 7.6.6 Building hyperbolic surfaces from pants.

If we make three slices in the two-holed torus we obtain two pairs of pants,
as indicated in the following figure.
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We label our cuts so that we can stitch up our surface later. Match
the ci, di, and ei edges to recover the two-holed torus. Any pair of pants
can be cut into two hexagons by cutting along the three vertical seams
in the pants. It follows that the two-holed torus can be constructed from
four hexagons, with edges identified in pairs as indicated below.
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The four hexagons represent a cell division of H2 having 6 vertices,
12 edges, and 4 faces. In the edge identification, corners come together
in groups of 4, so we need each corner angle to equal 90◦ in order to
endow it with a homogeneous geometry. We know we can do this in the
hyperbolic plane. Moreover, according to Theorem 5.4.19, there is freedom
in choosing the dimensions of the hexagons. That is, for each triple of real
numbers (a, b, c) there exists a right-angled hexagon in D with alternate
lengths a, b, and c. So, there exists a two-holed torus for each combination
of six seam lengths (a1, a2, a3, b1, b2, and b3).
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A surface that admits one of our three geometries will have constant curvature.
The reader might have already noticed that the sign of the curvature will equal
the sign of the surface’s Euler characteristic. Of course the magnitude of the
curvature (if k 6= 0) can vary if we place a polygonal surface in a scaled version
of P2 or D. That is, while the type of homogeneous geometry a surface admits
is determined by its Euler characteristic (which is determined by its shape), the
curvature scale can vary if k 6= 0. By changing the radius of a sphere, we change
its curvature (though it always remains positive). Similarly, the surface C3 in
Figure 7.6.2 has constant curvature -1 if it is placed in the hyperbolic plane of
Chapter 5. However, it can just as easily find itself in the hyperbolic plane with
curvature k = −8. Recall, the hyperbolic plane with curvature k < 0 is modeled
on the open disk in C centered at the origin with radius 1/

√
|k|. Placing the

hexagonal representation of C3 into this space so that its corner angle sum is still
2π produces a surface with constant curvature k.

We have finally arrived at the elegant relationship between a surface’s curvature
k, its area, and its Euler characteristic. This relationship crystalizes the interaction
between the topology and geometry of surfaces.

Theorem 7.6.7 Gauss-Bonnet. The area of a surface with constant curvature
k and Euler characteristic χ is given by the formula kA = 2πχ.

Proof. The sphere with constant curvature k has radius equal to 1/
√
k, and

area equal to 4π/k. Since the sphere has Euler characteristic 2, the Gauss-Bonnet
formula holds in this case. The projective plane P2 with curvature k has area
equal to 2π/k, and Euler characteristic equal to 1, so the result holds in this case
as well. The torus and the Klein bottle each have k = 0 and χ = 0, so in this case
the Gauss-Bonnet formula reduces to the true statement that 0 = 0.

Any surface of constant negative curvature cam be represented by a regular
n-sided polygon with n ≥ 6. Furthermore, this polygon can be placed in the
hyperbolic plane with curvature k < 0, so that its interior angles sum to 2π
radians. According to Theorem 7.4.4,

kA = 2π − (n− 2)π = 2π
(

2− n

2

)
,

where A is the area of the n-gon.
Now, for g ≥ 2, Hg is represented by a 4g-gon so that

kA = 2π(2− 2g) = 2πχ(Hg).

For g ≥ 3, Cg is represented by a 2g-gon so that

kA = 2π(2− g) = 2πχ(Cg).

This completes the proof. �

Suppose a two-dimensional cosmologist believes she lives in a surface of constant
curvature (because her universe looks homogeneous and isotropic). If she can
deduce the curvature of the universe and its total area, she will know its Euler
characteristic. That is, by measuring these geometric properties she can deduce
the shape of her universe, or, at worst, narrow down the possibilities to two. If χ
is 2 or an odd integer then the cosmologist will know the shape of the universe.
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If χ < 2 is even, her universe will have one of two possible shapes - one shape
orientable, the other non-orientable.

Exercises
1. Suppose our intrepid team of two-dimensional explorers from Exercise 7.4.4,

after an extensive survey, estimates with high confidence that the area of their
universe is between 800,000 km2 and 900,000 km2. Assuming their universe is
homogeneous and isotropic, what shapes are possible for their universe? Can
they deduce from this information the orientability status of their universe?

2. Suppose a certain constant curvature 3-holed torus H3 has area 5.2 km2.
What must be the area of a constant curvature C3 surface so that they have
the same curvature?

3. Building a hyperbolic surface from pairs of pants. To construct Hg for g ≥ 2
from pairs of pants, how many do we need? Express your answer in terms of
g.

4. Suppose we want to build a regular n-gon in (D,H) from the vertices vk =
rei

k
n 2π for k = 0, 1, . . . , n− 1 so that the n interior angles sum to 2π. Prove

that this is the case when r =
√

cos(2π/n). Hint: It may be helpful to refer
to Exercise 5.4.9 where we proved this result in the case n = 8.

7.7 Quotient Spaces
We may bend a sheet of paper and join its left and right edges together to obtain
a cylinder. If we let I2 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} represent our
square piece of paper, and C = {(x, y, z) ∈ R3 | x2 + y2 = 1, 0 ≤ z ≤ 1} represent
a cylinder, then the map

p : I2 → C by p((x, y)) = (cos(2πx), sin(2πx), y)

models this gluing process.

p

Figure 7.7.1 Bending a sheet of paper into a cylinder.
This map tries very hard to be a homeomorphism. The map is continuous, onto,

and it is almost one-to-one with a continuous inverse. It fails in this endeavor only
where we join the left and right edges: the points (0, y) and (1, y) in I2 both get
sent by p to the point (1, 0, y). But p is nice enough to induce a homeomorphism
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between the cylinder and a modified version of the domain I2, obtained by
“dividing out” of I2 the mapping redundancies so that the result is one-to-one.
The new version of I2 is called a quotient space. We develop quotient spaces in
this section because all surfaces and candidate three-dimensional universes can be
viewed as quotient spaces. We need the notion of an equivalence relation on a set.
To get this, we need the notion of a relation.

A relation on a set S is a subset R of S × S. In other words, a relation
R consists of a set of ordered pairs of the form (a, b) where a and b are in S. If
(a, b) is an element in the relation R, we may write aRb. It is common to describe
equivalence relations, which we define shortly, with the symbol ∼ instead of R.
So, when you see a ∼ b this means the ordered pair (a, b) is in the relation ∼,
which is a subset of S × S.
Definition 7.7.2 An equivalence relation on a set A is a relation ∼ that
satisfies these three conditions:

1. Reflexivity: x ∼ x for all x ∈ A

2. Symmetry: If x ∼ y then y ∼ x

3. Transitivity: If x ∼ y and y ∼ z then x ∼ z.

For any element a ∈ A, the equivalence class of a, denoted [a], is the subset
of all elements in A that are related to a by ∼. That is,

[a] = {x ∈ A | x ∼ a}.

♦

Example 7.7.3 An equivalence relation.

Define z ∼ w in C if and only if Re(z) − Re(w) is an integer and
Im(z) = Im(w). For instance, (−1.6 + 4i) ∼ (2.4 + 4i) since the dif-
ference of the real parts (-1.6 - 2.4 = -4) is an integer and the imaginary
parts are equal. To show ∼ is an equivalence relation, we check the three
requirements.

1. Reflexivity: Given z = a+ bi, it follows that z ∼ z because a− a = 0
is an integer and b = b.

2. Symmetry: Suppose z ∼ w. Then Re(z) − Re(w) = k for some
integer k and Im(z) = Im(w). It follows that Re(w)− Re(z) = −k
is an integer and Im(w) = Im(z). In other words, w ∼ z.

3. Transitivity: Suppose z ∼ w and w ∼ v. We must show z ∼ v. Since
z ∼ w, Re(z) − Re(w) = k for some integer k, and since w ∼ v,
Re(w)− Re(v) = l for some integer l. Notice that

k + l = [Re(z)− Re(w)] + [Re(w)− Re(v)]
= Re(z)− Re(v).

So, Re(z) − Re(v) is an integer. Furthermore, we have Im(z) =
Im(w) = Im(v). Thus, z ∼ v.
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The equivalence class of a point z = a+bi consists of all points w = c+bi
where a− c is an integer. In other words, c = a+ n for some integer n, so
w = z+n and we may express the equivalence class as [z] = {z+n | n ∈ Z}.

A partition of a set A consists of a collection of non-empty subsets of A that
are mutually disjoint and have union equal to A. An equivalence relation on a
set A serves to partition A by the equivalence classes. Indeed, each equivalence
class is non-empty since each element is related to itself, and the union of all
equivalence classes is all of A by the same reason. That equivalence classes are
mutually disjoint follows from the following lemma.

Lemma 7.7.4 Suppose ∼ is an equivalence relation on A, and a and b are any
two elements of A. Then either [a] and [b] have no elements in common, or they
are equal sets.

Proof. Suppose there is some element c that is in both [a] and [b]. We show
[a] = [b] by arguing that each set is a subset of the other.

That [a] is a subset of [b]: Suppose x is in [a]. We must show that x is in [b]
as well. Since x is in [a], x ∼ a. Since c is in [a] and in [b], c ∼ a and c ∼ b. We
may use these facts, along with transitivity and symmetry of the relation, to see
that x ∼ a ∼ c ∼ b. That is, x is in [b]. Therefore, everything in [a] is also in [b].

We may repeat the argument above to show that [b] is a subset [a]. Thus, if
[a] and [b] have any element in common, then they are entirely equal sets, and
this completes the proof. �

In light of Lemma 7.7.4, an equivalence relation on a set provides a natural
way to divide its elements into subsets that have no points in common. An
equivalence relation on A, then, determines a new set whose elements are the
distinct equivalence classes.

Definition 7.7.5 If ∼ is an equivalence relation on a set A, the quotient set of
A by ∼ is

A/∼ = {[a] | a ∈ A}.

♦
We will be interested in quotients of three spaces: the Euclidean plane C, the

hyperbolic plane D, and the sphere S2. If we build a quotient set from one of
these spaces, we will call a region of the space a fundamental domain of the
quotient set if it contains a representative of each equivalence class of the quotient
and at most one representative in its interior.

Orbit Spaces
We may construct a natural quotient set from a geometry (X,G).

The group structure of G defines an equivalence relation ∼G on X as follows:
For x, y ∈ X, let

x ∼G y if and only if T (x) = y for some T ∈ G.

Indeed, for each x ∈ X, x ∼G x because the group G must contain the identity
transformation, so the relation is reflexive. Next, if x ∼G y then T (x) = y for
some T in G. But the group contains inverses, so T−1 is in G and T−1(y) = x.
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Thus y ∼G x, and so ∼G is symmetric. Third, transitivity of the relation follows
from the fact that the composition of two maps in G is again in G.

Given geometry (X,G) we let X/G denote the quotient set determined by the
equivalence relation ∼G. In this setting we call the equivalence class of a point x
in X, the orbit of x. So, the orbit of x consists of all points in the space X to
which x can be mapped under transformations of the group G:

[x] = {y ∈ X | T (x) = y for some T ∈ G}.

Put another way, the orbit of x is the set of points in X congruent to x in the
geometry (X,G).

Note that if the geometry G is homogeneous, then any two points in X are
congruent and, for any x ∈ X, the orbit of x is all of X. In this case the quotient
set X/G consists of a single point, which is not so interesting. We typically want
to consider orbit spaces X/G in which G is a “small” group of transformations.

We say that a group of transformations G of X is a group of homeomor-
phisms of X if each transformation in G is continuous. In this case, we call X/G
an orbit space. If X has a metric, we say that a group of transformations of X
is a group of isometries if each transformation of the group preserves distance
between points.

Example 7.7.6 Building a topological cylinder.

Consider the horizontal translation T1(z) = z+1 of C. This transformation
is a (Euclidean) isometry of C and it generates a group of isometries of
C as follows. Put T1 and T−1

1 in the group, along with any number
of compositions of these transformations. Fortunately, any number of
compositions of these two maps results in an isometry that is easy to write
down. Any finite composition of copies of T1 and T−1

1 indicates a series of
instructions for a point z: at each step in the long composition z moves
either one unit to the left if we apply T−1

1 or one unit to the right if we
apply T1. In the end, z has moved horizontally by some integer amount.
That is, any such composition can be written as Tn(z) = z + n for some
integer n. We let 〈T1〉 denote the group generated by T1, and we have

〈T1〉 = {Tn(z) = z + n | n ∈ Z}.

The orbit of a point p under this group of isometries is

[p] = {p+ n | n ∈ Z}.

A fundamental domain for the orbit space C/〈T1〉 is the vertical strip
consisting of all points z with 0 ≤ Re(z) ≤ 1, as in the following figure.
Every point in C is related to a point in this shaded vertical strip. Further-
more, no two points in the interior of the strip are related. By passing to
the quotient, we are essentially “rolling” up the plane in to an infinitely tall
cylinder. The rolling up process is described by the map p : C→ C/〈T1〉
given by p(z) = [z].
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p

Example 7.7.7 A quotient space from rotations.

The rotation Rπ
2

of C by π/2 about the origin generates a group of
isometries of C consisting of four transformations. We generate the group
as before, by considering all possible compositions of Rπ

2
and R−1

π
2
. This

group turns out to be finite: Any combination of these rotations produces
a rotation by 0, π/2, π, or 3π/2 radians, giving us

〈Rπ
2
〉 = {1, Rπ

2
, Rπ, R 3π

2
}.

The orbit of the point 0 is simply {0} because each transformation in
the group fixes 0, but the orbit of any other point in C is a four-element
set. For instance, the orbit of 1 is [1] = {i,−1,−i, 1}.

It turns out that every surface can be viewed as a quotient space of the form
M/G, where M is either the Euclidean plane C, the hyperbolic plane D, or the
sphere S2, and G is a group of isometries in Euclidean geometry, hyperbolic
geometry, or elliptic geometry, respectively. In topology terminology, the space
M is called a universal covering space of the orbit space M/G.

Example 7.7.8 H1 as quotient of C.

Suppose a and b are positive real numbers. Let 〈Ta, Tbi〉 be the group of
homeomorphisms generated by the horizontal translation Ta(z) = z + a
and the vertical translation Tbi(z) = z + bi.

This group contains all possible compositions of these two transforma-
tions and their inverses. Thus, the orbit of a point z consists of all complex
numbers to which z can be sent by moving z horizontally by some integer
multiple of a units, and vertically by some integer multiple of b units. An
arbitrary transformation in Γ = 〈Ta, Tbi〉 has the form

T (z) = z + (ma+ nbi)

where m and n are integers. A fundamental domain for the orbit space
consists of the rectangle with corners 0, a, a+ bi, bi. The resulting quotient
space is homeomorphic to the torus. Notice that points on the boundary of
this rectangle are identified in pairs. In fact, the fundamental domain, with
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its boundary point redundancies, corresponds precisely to our polygonal
surface representation of the torus.

p

If the space M has a metric and our group of homeomorphisms is sufficiently
nice, then the resulting orbit space inherits a metric from the universal covering
space M . To be sufficiently nice, we first need our homeomorphisms to be
isometries. The group of isometries must also be fixed-point free and properly
discontinuous. The group G is fixed-point free if each isometry in G (other than
the identity map) has no fixed points. The group G is properly discontinuous
if every x in X has an open 2-ball Ux about it whose images under all isometries
in G are pairwise disjoint. The interested reader is encouraged to see [10] or [9]
for more detail. If our group G is a fixed-point free, properly discontinuous group
of isometries, then the resulting orbit space inherits a metric from M .

Consider the quotient space in Example 7.7.7. The group here is a group of
isometries, since rotations preserve Euclidean distance, but it is not fixed-point
free. All maps in G have fixed points (rotation about the origin fixes 0). This
prevents the quotient space from inheriting the geometry of its mother space.
Indeed, a circle centered at [0] with radius r would have circumference 2πr

4 , which
doesn’t correspond to Euclidean geometry.

The group of isometries in the torus example is fixed-point free and properly
discontinuous, so the following formula for the distance between two points [u]
and [v] in the orbit space C/〈Ta, Tbi〉 is well-defined:

d([u], [v]) = min{|z − w| | z ∈ [u], w ∈ [v]}.

Figure 7.7.9 depicts two points in the shaded fundamental domain, [u] and [v].
The distance between them equals the Euclidean distance in C of the shortest
path between any point in equivalence class [u] and any point in equivalence
class [v]. There are many such nearest pairs, and one such pair is labeled in
Figure 7.7.9 where z is in [u] and w is in [v]. Also drawn in the figure is a solid
line (in two parts) that corresponds to the shortest path one would take within
the fundamental domain to proceed from [u] to [v]. This path marks the shortest
route a ship in the video game from Chapter 1 could take to get from [u] to [v].
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z

w

[u]
[v]

Figure 7.7.9 The distance between two points in the torus viewed as a quotient
of C.

Example 7.7.10 P2 as quotient of S2.

Let Ta : S2 → S2 be the antipodal map Ta(P ) = −P . This map is an
isometry that sends each point on S2 to the point diametrically opposed
to it, so it is fixed-point free. Since T−1

a = Ta, the group generated by this
map consists of just 2 elements: Ta and the identity map. The quotient
space S2/〈Ta〉 is the projective plane.

Example 7.7.11 H2 as quotient of D2.

We may build a regular octagon in the hyperbolic plane whose interior
angles equal π/4 radians. We may also find a hyperbolic transformation
that takes an edge of this octagon to another edge. Labelling the edges
as in the following diagram, let Ta be the hyperbolic isometry taking
one a edge to the other, being careful to respect the edge orientations.
We construct such a map by composing two hyperbolic reflections about
hyperbolic lines: the hyperbolic line containing the first a edge, and the
hyperbolic line m that bisects the b edge between the a edges. Since
the two lines of reflection do not intersect, the resulting map in H is a
translation in H and has no fixed points in D (the fixed points are ideal
points).

a

bc

d

c

d a
b
m
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Define Tb, Tc, and Td similarly and consider the group of isometries of
D generated by these four maps. This group is a fixed-point free, properly
discontinuous group of isometries of D, so the resulting quotient space
inherits hyperbolic geometry.

The distance between two points [u] and [v] in the quotient space is
given by

dH([u], [v]) = min{dH(z, w) | z ∈ [u], w ∈ [v]}.

Geodesics in the quotient space are determined by geodesics in the
hyperbolic plane D.

Topologically, the quotient space is homeomorphic to H2, and the
octagon pictured above serves as a fundamental domain of the quotient
space. Moving copies of this octagon by isometries in the group produces a
tiling of D by this octagon. Each copy of the octagon would serve equally
well as a fundamental domain for the quotient space. Figure 7.7.12 displays
a portion of this tiling, including a geodesic triangle in the fundamental
domain, and images of it in neighboring octagons.

a

a

b

b

c

c

d

d

Figure 7.7.12 A triangle in H2, with various images of it.
All surfaces Hg for g ≥ 2 and Cg for g ≥ 3 can be viewed as quotients of D by

following the procedure in the previous example.
Start with a perfectly sized polygon in D. The polygon must have corner angle

sum equal to 2π radians, and the edges that get identified must have equal length
so that an isometry can take one to the other. (In every example so far, we have
used regular polygons in which all sides have the same length, but asymmetric
polygons will also work.) Next, for each pair of oriented edges to be identified, find
a hyperbolic isometry that maps one onto the other (respecting the orientation
of the edges). The group generated by these isometries creates a quotient space
homeomorphic to the space represented by the polygon, and it inherits hyperbolic
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geometry. Note also that the initial polygon can be moved by the isometries in
the group to tile all of D without gaps or overlaps.

Dirichlet Domain
We end this section with a discussion of the Dirichlet domain, which is an important
tool in the investigation of the shape of the universe. Suppose we live in a surface
described as a quotient M/G where M is either C, D, or S2, and G is a fixed-point
free and properly discontinuous group of isometries of the space. For each point
x in M define the Dirichlet domain with basepoint x to consist of all points
y in M such that

d(x, y) ≤ d(x, T (y))

for all T in G, where it is understood that d(x, y) is Euclidean distance, hyperbolic
distance, or elliptic distance, depending on whether M is C, D, or S2, respectively.

At each basepoint x in M , the Dirichlet domain is itself a fundamental domain
for the surface M/G, and it represents the fundamental domain that a two-
dimensional inhabitant might build from his or her local perspective. It is a
polygon in M (whose edges are lines in the local geometry) consisting of all points
y that are as close to x or closer to x than any of its image points T (y) under
transformations in G.

We may visualize a Dirichlet domain with basepoint x as follows. Consider
a small circle in M centered at x. Construct a circle of equal radius about all
points in the orbit of x. Then, begin inflating the circle (and all of its images).
Eventually the circles will touch one another, and as the circles continue to expand
let them press into each other so that they form a geodesic boundary edge. When
the circle has filled the entire surface, it will have formed a polygon with edges
identified in pairs. This polygon is the Dirichlet domain.

At any basepoint in the torus of Example 7.7.8 the Dirichlet domain will be a
rectangle identical in proportions to the fundamental domain. In general, however,
the shape of a Dirichlet domain may be different than the polygon on which the
surface was built, and the shape of the Dirichlet domain may vary from point to
point, which is rather cool.

a a

b b

c c

1 2

i

Figure 7.7.13 Building a Klein bottle from a hexagon.

Example 7.7.14 Dirichlet domains in a Klein bottle.

Consider the surface constructed from the hexagon in Figure 7.7.13, which
appeared in Levin’s paper on cosmic topology [23]. Assume the hexagon
is placed in C with its six corners at the points 0, 1, 2, 2 + i, 1 + i and i.
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This polygonal surface represents a cell division of a surface with three
edges, two vertices, and one face. The Euler characteristic is thus 0, so
the surface is either the torus or Klein bottle. In fact, it is a Klein bottle
because it contains a Möbius strip. We may tile the Euclidean plane with
copies of this hexagon using the transformations T (z) = z + 2i (vertical
translation) and r(z) = z + (1 + 2i) (a transformation that reflects a point
about the horizontal axis y = 1 and then translates to the right by one
unit). The following figure shows the shaded fundamental domain A and
its images under various combinations of T and r.

a a

b b

c cA

a a

b b

cr2(A)

a a

b b

cr4(A)

a a

b

c cr−1(A)

a a

cr(A)

a a

cr3(A)

b b

c cT (A)

b b

cT ◦ r2(A)

a

b b

c cT−1 ◦ r−1(A)
b b

cT−1 ◦ r(A)
b b

cT−1 ◦ r3(A)

If Γ is the group of transformations generated by T and r, the quotient
space C/Γ is the Klein bottle, and its geometry is Euclidean, inherited
from the Euclidean plane C.

It turns out that the Dirichlet domain at a basepoint in this space can
vary in shape from point to point. Exercise 7.7.4 investigates the shape of
the Dirichlet domain at different points.

Exercises
1. Show that the Dirichlet domain at any point of the torus in Example 7.7.8 is

an a by b rectangle by completing the following parts.
a. Construct an a by b rectangle to be the fundamental domain, and place

eight copies of this rectangle around the fundamental domain as in
Figure 7.7.9. Then plot a point x in the fundamental domain, and plot
its image in each of the copies.

b. For each image x′ of x, construct the perpendicular bisector of the
segment xx′. The eight perpendicular bisectors enclose the Dirichlet
domain based at x. Prove that the Dirichlet domain is also an a by b
rectangle.

2. Construct C3 as a quotient of D by a group of isometries of D. Be as explicit
as possible when defining the group of isometries.

3. Explain why the g-holed torus Hg can be viewed as a quotient of D by
hyperbolic isometries for any g ≥ 2.
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4. Consulting Example 7.7.14, show that the Dirichlet domain at any point z on
the line Im(z) = 1/2, such as the one in Figure 7.7.15, is a square. Show that
the Dirichlet domain at any point z on the line Im(z) = 0 is a rectangle.

a

a

a

b

b

b

w[w]

[w]

[w] [w]

[w][w][w]

[w]
z

[z]

[z]

[z]

[z]

[z]

[z]

[z]

[z]

Figure 7.7.15 The Dirichlet domain at a point is obtained by considering per-
pendicular bisectors with its nearest images, and its shape can vary from point to
point, as at points z and w. In the figure all vertically oriented edges are c edges.
All horizontally oriented edges in a given row have the same label, either a or b as
indicated.
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Cosmic Topology

Cosmic topology can be described as the effort to determine the shape of our
universe through observational techniques. In this chapter we discuss two programs
of research in cosmic topology: the cosmic crystallography method and the circles-
in-the-sky method. Both programs search for topology by assuming the universe is
finite in volume without boundary. The chapter begins with a discussion of three-
dimensional geometry and some 3-manifolds that have been given consideration
as models for the shape of our universe.

8.1 Three-Dimensional Geometry and 3-Manifolds

Recall that R3 is the set of ordered triples of real numbers (x, y, z), and a
3-manifold is a space with the feature that every point has a neighborhood
that is homeomorphic to an open 3-ball. We assume that the shape of the
universe at any fixed time is a 3-manifold. Evidence points to a universe that
is isotropic and homogeneous on the largest scales. If this is the case, then
just as in the two-dimensional case, the universe admits one of three geometries:
hyperbolic, elliptic, or Euclidean. This section offers a brief introduction to the
three-dimensional versions of these geometries before turning to 3-manifolds. The
reader is encouraged to see [12] for a broader intuitive discussion of these ideas,
or [11] for a more rigorous approach.

Euclidean Geometry in Three Dimensions. Euclidean geometry is the
geometry of our experience in three dimensions. Planes look like infinite tabletops,
lines in space are Euclidean straight lines. Any planar slice of 3-space inherits
two-dimensional Euclidean geometry.

The space for three-dimensional Euclidean geometry is R3, and we may use
boldface notation v to represent a point in R3. The group of transformations in
this geometry consists of all rotations of R3 about lines and all translations by
vectors in R3. The distance between points v = (x1, y1, z1) and w = (x2, y2, z2)
is given by the Euclidean distance formula

|v −w| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

195
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Any transformation in the group can be expressed as a screw motion. A screw
motion is a transformation of R3 consisting of a translation in the direction of a
line followed by a rotation about that same line. Of course, rotations about lines
and translations are special cases of this more general map.

Hyperbolic Geometry in Three Dimensions. The Poincaré disk model of
hyperbolic geometry may be extended to three dimensions as follows. Let the
space H3 consist of all points inside the unit ball in R3. That is, let

H3 = {(x, y, z) ∈ R3|x2 + y2 + z2 < 1}.

The unit 2-sphere S2 bounds H3, and is called the sphere at infinity. Points
on the sphere at infinity are called ideal points and are not points in H3.

The group of transformations for three-dimensional hyperbolic geometry is
generated by inversions about spheres that are orthogonal to the sphere at infinity.
Inversion about a sphere is defined analogously to inversion in a circle. Suppose
S is a sphere in R3 centered at v0 with radius r, and v is any point in R3. Define
the point symmetric to v with respect to S to be the point v∗ on the ray −−→v0v
such that

|v − v0||v∗ − v0| = r2.

One may prove that inversion about a sphere S will send spheres orthogonal
to S to themselves. So, composing two inversions about spheres orthogonal to S2

∞
generates an orientation preserving transformation of hyperbolic three-space H3.
The transformation group consists of all such compositions. Lines in this geometry
correspond to arcs of clines in H3 that are orthogonal to the sphere at infinity (see
line L in Figure 8.1.1). These lines are geodesics in H3. As in the two-dimensional
case, Euclidean lines through the origin of H3 are also hyperbolic lines. A plane
in this geometry corresponds to the portion of a sphere or Euclidean plane inside
H3 that meets the sphere at infinity at right angles, such as planes P1 and P2
in Figure 8.1.1. If we restrict our attention to any plane in H3, we recover the
two-dimensional hyperbolic geometry of Chapter 5.

S2
∞

P2

P1

L

Figure 8.1.1 One model of hyperbolic space H3, the open unit 2-ball.

Elliptic Geometry in three dimensions. Three-dimensional elliptic geome-
try is derived from the geometry that the 3-sphere S3 inherits as a subspace of
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the Euclidean space R4. The 3-sphere consists of all points in 4-dimensional space
one unit from the origin:

S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1}.

Great circles in S3 are circles of maximum diameter drawn in the space. Great
circles correspond to geodesics in the space. Similarly, a great 2-sphere in S3 is a
2-sphere of maximum diameter drawn in the space. As a subspace of S3, a great
2-sphere inherits the elliptic geometry of Chapter 6. The 3-sphere is discussed in
more detail in Example 8.1.3.

The transformation group for elliptic geometry in three dimensions is conve-
niently described by viewing R4 as the set of quaternions. A quaternion has the
form a+ bi+ cj+ dk where a, b, c, d are real numbers and i, j, and k are imaginary
numbers with the feature that i2 = j2 = k2 = −1 and the additional property that
the product ijk = −1. The constant a is called the scalar term of the quaternion
q = a+ bi+ cj+dk. The modulus of q is |q| =

√
a2 + b2 + c2 + d2. A quaternion

q is called a unit quaternion, if |q| = 1. The conjugate of q, denoted q∗, is the
quaternion q∗ = a− bi− cj− dk. One can check that q · q∗ = |q|2. The 3-sphere
then consists of all unit quaternions.

The transformation group for the geometry on S3 is generated by multiplication
on the left and/or right by unit quaternions. For fixed unit quaternions u and
v, the map T : S3 → S3 by T (q) = uqv is a typical transformation in three-
dimensional elliptic geometry. These transformations preserve antipodal points on
the 3-sphere - distinct points on S3 that are on the same Euclidean line through
the origin in R4.

As in the two-dimensional case, three-dimensional Euclidean, hyperbolic, and
elliptic geometries are homogenous, isotropic and metric. Furthermore, triangles
distinguish the geometries: in Euclidean space R3, a triangle has angle sum
equal to π radians; in S3 any triangle angle sum exceeds π radians; in H3 any
triangle angle sum is less than π radians. As a result, if we place a solid like a
dodecahedron in H3 (so that the faces are portions of planes in H3), the angles
at which the corners come together are smaller than the corner angles of the
Euclidean dodecahedron. These angles shrink further as the corner points of the
solid approach ideal points on the sphere at infinity. On the other hand, placing
the dodecahedron in S3 will increase the angles at the corners.

This flexibility is very useful. Whereas surfaces can be constructed from
polygons by identifying their edges in pairs, many 3-manifolds can be constructed
from a 3-complex (such as the Platonic solids) by identifying its faces in pairs.
A 3-manifold built in this way will admit either Euclidean geometry, hyperbolic
geometry, or elliptic geometry depending on how, if at all, the corner angles
need to change so that the corners come together to form a perfect patch of
three-dimensional space. Now we investigate a few 3-manifolds and the geometry
they admit.

Example 8.1.2 The 3-torus.

We may think of the 3-torus T3 as a cubical room with the following
face (or wall) identifications: if we propel ourselves (with a jet pack) up
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through the ceiling, we reappear through the floor directly below where
we had been. For instance, the elliptical points in the following figure are
identified. Each point on the top face is identified with the corresponding
point on the bottom face. If we fly through the left wall we reappear
through the right wall at the corresponding spot (see the triangles in the
figure). If we fly through the front wall we reappear through the back wall
at the corresponding spot (see the squares in the figure).

The 3-torus is the three-dimensional analogue of the torus video screen
we saw on the first pages of this text. In fact, a slice of the 3-torus in
a plane parallel to one of the faces is a torus. One checks that under
the face identification, all eight corners come together in a single point.
The angles at these corners are such that they form a perfect patch of
three-dimensional space. We do not need to inflate the corner angles (in
elliptic space) or shrink the angles (in hyperbolic space) in order for the
corners to come together perfectly.

We can also view the 3-torus as an orbit space as discussed in Section 7.7.
In particular, let Tx, Ty, Tz represent translations of R3 by one unit in the
x-direction, y-direction, and z-direction, respectively. That is, Tx(x, y, z) =
(x+ 1, y, z), Ty(x, y, z) = (x, y + 1, z) and Tz(x, y, z) = (x, y, z + 1). These
three transformations generate a group of transformations Γ of R3, and any
transformation in the group has the form T (x, y, z) = (x+ a, y + b, z + c)
where a, b, c are integers. A fundamental domain of the quotient space
R3/Γ is the unit cube

I3 = {(x, y, z) | 0 ≤ x, y, z ≤ 1},

and all the images of this cube under the transformations in Γ tile R3.
The 3-torus is a quotient of R3 generated by Euclidean isometries, and it
inherits Euclidean geometry.

The 3-torus is one of just ten compact and connected 3-manifolds admitting
Euclidean geometry. Of these ten, six are orientable, and four are non-orientable.
The 3-torus is orientable, and the other five orientable Euclidean manifolds are
presented below in Example 8.1.7 and Example 8.1.9.

The elliptic 3-manifolds have also been classified. There are infinitely many
different types, and it turns out they are all orientable. The 3-sphere is the simplest
elliptic 3-manifold, and Albert Einstein assumed the universe had this shape when
he first solved his equations for general relativity. He found a static, finite, simply
connected universe without boundary appealing for aesthetic reasons, and it
cleared up some paradoxes in physics that arise in an infinite universe. However,
the equations of general relativity only tell us about the local nature of space,
and do not fix the global shape of the universe. In 1917, the Dutch astronomer
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Willem De Sitter (1872-1934) noticed that Einstein’s solutions admitted a another,
different global shape: namely three-dimensional elliptic space obtained from
the 3-sphere by identifying antipodal points, just as we did in Chapter 6 in the
two-dimensional case.

Example 8.1.3 The 3-sphere.

Recall, the 3-sphere consists of all points in 4-dimensional space 1 unit
from the origin:

S3 = {(x, y, z, w) | x2 + y2 + z2 + w2 = 1}.

One model of S3 consists of two solid balls in R3 whose boundary
2-spheres are identified point for point, as in the following figure. The
figure shows a path from point a to point b in S3 that goes through the
point p on the boundary of the left-hand solid ball before entering the
right-hand solid ball through the point on its boundary with which p has
been identified (also called p).

p

a

p

b

The 3-sphere has interesting features, often accessible by analogy with
the 2-sphere. If you slice the 2-sphere with a plane in R3, the intersection is
a circle (or a single point if the plane is tangent to the 2-sphere). Moreover,
the circle of intersection is a geodesic on the 2-sphere if it is a great circle: a
circle of maximum radius drawn on the 2-sphere. Bumped up a dimension,
if you “slice” the 3-sphere with R3, the intersection is a 2-sphere (or a single
point if the slice is tangent to S3). Moreover, the 2-sphere of intersection
is a great 2-sphere if it is a 2-sphere of maximum diameter drawn in S3.
The boundary 2-sphere common to both solid balls in the figure is a great
2-sphere of S3.

One may also view S3 by stereographically projecting it into the space
obtained from R3 by adding a point at ∞, much as we identified S2 with
the extended plane via stereographic projection in Section 3.3. Let R̂3

denote real 3-space with a point at infinity attached to it. To construct the
stereographic projection map, it is convenient to first express R3 in terms
of pure quaternions. A pure quaternion is a quaternion q whose scalar
term is 0. That is, a pure quaternion has the form q = bi + cj + dk. The
point (x, y, z) in R3 is identified with the pure quaternion q = xi+ yj+ zk.

Though we are working in four-dimensional space, Figure 3.3.4 serves
as a guide in the construction of the stereographic projection map. Let
N = (0, 0, 0, 1) be the north pole on S3. If P = (a, b, c, d) is any point on
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S3 other than N , construct the Euclidean line through N and P . This line
has parametric form

L(t) = 〈0, 0, 0, 1〉+ t〈a, b, c, d− 1〉.

We define the image of P under stereographic projection to be the
intersection of this line with the three-dimensional subspace consisting of
all points (x, y, z, 0) in R4. This intersection occurs when 1 + t(d− 1) = 0,
or when

t = 1
1− d .

Then the stereographic projection map φ : S3 → R̂3 is given by

φ((a, b, c, d)) =
{

a
1−d i + b

1−d j + c
1−dk if d 6= 1;

∞ if d = 1.

In this way, we can transfer the geometry of the 3-sphere into real 3-
space with a point at infinity attached to it. For instance, if P = (a, b, c, d)
is on the 3-sphere, its antipodal point is −P = (−a,−b,−c,−d) and one
can show (in the exercises) that these points get mapped by φ to points in
R3 (pure quaternions) q = φ(P ) and u = φ(−P ) with the property that
q · u∗ = −1. As a result, two points q and u in R̂3 are called antipodal
points if they satisfy the equation q · u∗ = −1.

Example 8.1.4 The Poincaré dodecahedral space.

The Poincaré dodecahedral space has been given consideration as a
model for the shape of our universe (see [25]). Start with a dodecahedron
living in R3 (we’re thinking of it as a solid now, not a surface) and identify
opposite faces with a one-tenth clockwise twist (rotation by 2π/10 radians).
It is cumbersome to indicate all face identifications, so the figure below
shows the identification of the front face with the back face. For instance,
the two corners labeled with a 1 get matched.Notice: no points in the
interior of the dodecahedron get identified.

With this face identification the twenty corners of the dodecahedron
come together in five groups of four (one group of 4 is marked with vertices
in the figure), and the angles are too small for the corners to create a full
open ball of three-dimensional space when they come together. Placing
the dodecahedron in elliptic space inflates the corner angles, and we may
make these angles fat enough to determine a perfect three-dimensional
patch of space.
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1

1

Extending the ideas of Section 7.7 to this case, one can show that the
Poincaré dodecahedral space space is a quotient of the 3-sphere S3 by a
group of isometries. The dodecahedron pictured here is a fundamental
domain of the space. Just as the polygons in Section 7.7 tiled the space
in which they lived, and the cubical fundamental domain of the 3-torus
tiles R3, the dodecahedron tiles S3. Although far from obvious, it turns
out that S3 is tiled by 120 copies of this dodecahedron!

Hyperbolic 3-manifolds have not been completely classified, but a remarkable
relationship exists between geometry and shape in this case: a connected orientable
3-manifold supports at most one hyperbolic structure. This marks an important
difference from the two-dimensional case. If a two-dimensional being knows that
she lives in a two-holed torus, say, then the area of her universe is determined
by its curvature, thanks to the Gauss-Bonnet formula, but other geometric
properties may vary, such as the length of minimal-length closed geodesic paths
in the universe, as we saw in Example 7.6.6. No such freedom exists in the
three-dimensional case.

Here is one hyperbolic 3-manifold, also built as a quotient of the dodecahedron.

Example 8.1.5 The Seifert-Weber space.

Identify opposite faces of the dodecahedron with a three-tenths clockwise
turn. With this identification, all twenty corners of the dodecahedron come
together to a single point, and no such identification is possible unless
we drastically shrink the corner angles. We may do this by placing the
dodecahedron in hyperbolic space. The resulting hyperbolic 3-manifold is
called the Seifert-Weber space.

1 1
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Example 8.1.6 Lens spaces.

The lens spaces L(p, q) form an infinite family of elliptic 3-manifolds.
Assume p > q are positive integers whose largest common factor is 1. The
lens spaces may be defined as follows. Consider the unit solid ball living
in R3 whose boundary is the unit 2-sphere. The ball consists of all points
(x, y, z) such that x2 + y2 + z2 ≤ 1. Any point on the boundary 2-sphere
can be expressed in coordinates (z, t) where z is a complex number, t is
real, and |z|2 + t2 = 1. The lens space L(p, q) is obtained from the solid
ball by identifying each point (z, t) on the boundary 2-sphere with the
point (e(2πq/p)iz,−t). Note that the north pole of the boundary 2-sphere
is (0, 1) and it is identified with the south pole (0,−1). Any other point u
in the northern hemisphere is identified with a single point in the southern
hemisphere. This point is found by reflecting u across the xy-plane, then
rotating around the z-axis by 2πq/p radians. Each point on the equator is
identified with p− 1 other points.

The lens space L(p, q) can be obtained from a cell division of the unit
solid ball. The cell division has p + 2 vertices: the north pole n, the
south pole s, and p equally spaced vertices along the equator, label them
v0, v1, · · · , vp−1. The following figure depicts this scene for p = 5. There
is an edge connecting vi to each of its neighbors on the equator, creating p
edges around the equator. There is an edge connecting each vi with n and
an edge connecting each vi with s, as pictured, for a total of 3p edges. The
vertices and edges create 2p triangular faces on the boundary sphere, half
of them in the northern hemisphere. The 3-complex has a single 3-cell,
corresponding to the interior of the solid ball.

s

n

v0

v1 v2

v3v4

L(5, 2)

Let Ni denote the face in the northern hemisphere whose vertices are
vi, vi+1, n. Let Si be the face in the southern hemisphere whose vertices
are vi, vi+1, and s. The lens space L(p, q) is created by identifying face Ni
with face Si+q where the sum i + q is taken modulo p. For instance, in
L(5, 2), the shaded face N0 in the figure is identified with the shaded face
S2 (and the circle of points pictured in N0 gets sent to the circle of points
in S2). The faces N1 and S3 are identified, as are N2 with S4, N3 with S0
and N4 with S1.
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Example 8.1.7 The Hantschze-Wendt manifold.

This interesting manifold can be constructed from two identically sized
cubes that share a face, as in the following figure. The resulting box has
10 faces to be identified in pairs. A three-dimensional bug with a jet pack
living in the manifold would experience the following face identifications.
The top and bottom faces are identified just as they were in the 3-torus.
Each point on the top back face (see the circle in the figure) is identified
with a single point on the bottom back face. This point is the reflection
of the given point across the vertical segment bisecting the face. The top
front face and the bottom front face are identified the same way. The
figure shows two square points on these faces that are identified. The top
left face and bottom right face are identified with a 180◦ rotation (see the
elliptical point and its image point), as are the bottom left face and the
top right face (the two triangular points are identified). This 3-manifold
also inherits Euclidean geometry.

A more elegant description of this manifold makes use of the orbit space
construction of Section 7.7. Consider a unit cube sitting in R3. Let T1 be
the following Euclidean transformation: Rotate by 180◦ about segment 1 in
Figure 8.1.8(a) and then translate along the length of that segment. The original
cube and its image are pictured in Figure 8.1.8(b). Let T2 be defined similarly
using segment 2 of Figure 8.1.8(a). The original cube and its image under T2
are pictured in Figure 8.1.8(c). The transformation T3 is defined the same way
using segment 3, and Figure 8.1.8(d) depicts its effect on the original cube. Each
of these transformations is a screw motion. In particular, each screw motion
consists of rotation by 180◦ and translation by unit length. The Hantzsche-Wendt
manifold is then the quotient of R3 by the group of Euclidean isometries generated
by the three screw motions, and it inherits Euclidean geometry.
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(2)

(3)

(1)

(a) (b)

(c) (d)

Figure 8.1.8 Describing the Hantzsche-Wendt Manifold via a group of transfor-
mations.

By repeated applications of the three transformations and their inverses one
may produce image cubes covering half of R3 in a checkerboard pattern. The
other points in R3 are themselves grouped into cubes and form the other half of
the checkerboard pattern. It follows that the ten-faced solid in Example 8.1.7 is a
fundamental domain of the manifold, and the face identifications are determined
by the transformation group.

Example 8.1.9 Four more Euclidean 3-manifolds.

Two orientable 3-manifolds arise from slight changes to the 3-torus con-
struction of Example 8.1.2. The quarter turn manifold results when
the front and back faces of a cube are identified with a 90◦ rotation, while
the remaining 2 pairs of opposite faces are identified directly, as they were
for the 3-torus. Figure 8.1.10(a) depicts this identification. The F on the
front face is identified with an F on the back face by a one-quarter turn.

The half turn manifold results when the front and back faces of a
cube are identified with a 180◦ rotation, while the remaining 2 pairs of
opposite faces are identified directly, as they were for the 3-torus. See
Figure Figure 8.1.10(b).
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The remaining two connected, compact, orientable Euclidean 3-manifolds
have a hexagonal prism as the fundamental domain. A hexagon can be
used to tile the plane, and copies of a hexagonal prism as in Figure 8.1.10(c)
can tile R3. Note that the prism has two hexagonal faces and the other
six faces are parallelograms. The one-third turn manifold is obtained
as follows: directly identify parallelograms that are opposite one another,
and identify the two hexagonal faces with a rotation of 120◦, as in Fig-
ure 8.1.10(c). The one-sixth turn manifold is obtained by identifying
the parallelograms as before, but the two hexagonal faces by a rotation of
just 60◦, as in Figure 8.1.10(d). More detailed discussions of these and the
non-orientable Euclidean 3-manifolds can be found in [12] and [16].

F

F

(a)
F

F

(b)

120◦

F

F

(c)

60◦

F

F

(d)

Figure 8.1.10 Four Euclidean 3-manifolds: (a) the quarter turn manifold; (b)
the half turn manifold; (c) the one-third turn manifold; and (d) the one-sixth turn
manifold.

Exercises
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1. Investigating quaternions.
a. Show that ij = k, jk = i, and ki = j.
b. Show that ji = −k, kj = −i, and ik = −j.
c. The conjugate of a quaternion q = a+bi+cj+dk is q∗ = a−bi−cj−dk.

The modulus of q is |q| =
√
a2 + b2 + c2 + d2. Prove that q · q∗ = |q|2

for any quaternion.
d. Prove that |uv| = |u| · |v| for any quaternions. Thus, the transformations

in three-dimensional elliptic geometry, which have the form T (q) = uqv
where u, q, v are unit quaternions, do send a point of S3 to a point on
S3.

2. Suppose P = (a, b, c, d) and −P = (−a,−b,−c,−d) are diametrically opposed
points on S3. Prove that

φ(P ) · φ(−P )∗ = −1,

where φ : S3 → R̂3 is stereographic projection.

3. Verify that in the 3-torus of Example 8.1.2, all eight corners come together at
a single point.

4. Verify that in the Poincaré dodecahedral space of Example 8.1.4, the corners
come together in five groups of four. Specify the five groups.

5. Verify that in the Seifert-Weber space of Example 8.1.5, all 20 corners come
together in a single point.

6. What happens if you identify each pair of opposite faces in a cube with a
one-quarter twist? Convince yourself that not all 8 corners come together at
a single point, so that the result is not a Euclidean 3-manifold.

8.2 Cosmic Crystallography
Imagine once again that we are two-dimensional beings living in a two-dimensional
universe. In fact, suppose we are living in the torus in Figure 8.2.1 at point E
(for Earth). Our world is homogeneous and isotropic, and adheres to Euclidean
geometry. Our lines of sight follow Euclidean lines. If we can see far enough,
we ought to be able to see an object, say G (for galaxy), in different directions.
Three different lines of sight are given in the figure.

E

G

(1) (3)(3)

(2)

(2)

Figure 8.2.1 Seeing multiple images of the same object in the torus.
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In fact, if we suppose for a minute that we can see as far as we wish, then we
would be able to see G by looking in any direction that produces a line of sight
with rational slope. In reality, we can’t see forever, and this limitation produces a
visual boundary. We will let robs denote the distance to which we can see, which
is the radius of our observable universe. To have any hope of seeing multiple
images of the same object, the diameter of our observable universe, 2robs, must
exceed some length dimension of the universe.

Getting back to the torus, the easiest way to find the directions in which
one can view G is to tile the plane with identical copies of the torus. Place the
Earth at the same point of each copy of the rectangle, and the same goes for
other objects such as G. Figure 8.2.2 displays a portion of the tiling, and our
visual boundary. According to Figure 8.2.2, in addition to the instance of G in
the fundamental domain, 5 of its images would be visible.

(1)(3)

(2)

E

E

E

E

E

E

E

E

E

G

G

G

G

G

G

G

G

G

robs

visual boundary

Figure 8.2.2 Detecting multiple images with a tiling of the universal covering.
Practically speaking, detecting multiple images of the same object is compli-

cated by the finite speed of light. Since the lines of sight in Figure 8.2.2 have
different lengths, we see the object G at different times in its evolution. In reality,
galaxies evolve dramatically over time. So even if we found an image of G looking
in some “longer” direction, it might look so different we wouldn’t recognize it.

Still, humanity has pondered the tantalizing possibility that one of the many
distant galaxies we’ve detected with our telescopes is actually the Milky Way
galaxy. Based on recent lower-bound estimates of the size of our universe, however,
it is now clear that we will not be treated to such a sight.

Rather than spotting different images of a particular object, perhaps we can
detect multiple images of the same object indirectly. Consider a catalog of similar
objects that don’t evolve too rapidly (such as galaxy superclusters). Assume we
have observed N such objects and they appear to be sprinkled randomly about
the universe (the universe is homogeneous and isotropic after all). In Figure 8.2.3
we have generated a two-dimensional random distribution of point sources.
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10 5 0 5 10

10

5

5
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Figure 8.2.3 The positions of N objects in a catalog.
Rather than hunt for two copies of the same source, we compute the distance

between each pair of sources in the catalog (we must make an assumption about
the geometry of space to compute these distances), giving us N(N−1)/2 distances.
If the catalog contains no repeat images, then the distances ought to follow a
Poisson probability distribution. The histogram of the N(N − 1)/2 distances is
called a pair separation histogram (PSH) and is given in Figure 8.2.4.

2R
0

Pair Separation Histogram
relative

frequency

distance

Figure 8.2.4 A pair separation histogram in a simply connected universe.
Now consider the catalog in Figure 8.2.5(a). As in Figure 8.2.3, the observable

radius has been scaled to 10 units. The objects we can observe may look evenly
distributed, but in fact there are multiple images of the same object. In this
simulation the universe is a torus and the observable radius exceeds the dimensions
of our universe. Placing ourselves at the origin in this catalog, our Dirichlet domain
in this torus universe has been superimposed on the catalog in Figure 8.2.5(b).

10 5 0 5 10

10

5

5

10

(a) (b)

10 5 0 5 10

10

5

5

10

Figure 8.2.5 The positions of N objects in a catalog.
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The pair separation histogram for this simulated catalog appears in Figure 8.2.6.
Notice the spikes in the histogram. Some distances are occurring with higher
frequency than one would expect by chance alone. At first glance, it looks like
the spikes occur at distances of about 10, 14, and 17 units.

0 5 10 15 20

Pair Separation Histogram for a flat torus universe 

Figure 8.2.6 A pair separation histogram in a torus universe.
What causes these spikes? Look at the catalog plot again in Figure 8.2.5(b),

and find an object near the top edge of the fundamental domain. We’ve highlighted
a group of objects that look a bit like a sled. There is a copy of this object just
below the bottom edge of the fundamental domain. The distance between a point
in this sled and its image below equals the length of the width dimension of our
torus, which is 14 in this simulation. Indeed, there are lots of points for which we
see an image displaced vertically in this manner, so this distance will occur lots
of time in the pair separation histogram.

Another copy of our big sled appears just to the right of the right edge of
the fundamental domain. So, the distance between a point and its horizontally
displaced image will be equal to the length dimension of the torus, which is 10 in
this simulation. There are also lots of these pairs in the catalog - in fact more
than before since this dimension of the fundamental rectangle is smaller. This
accounts for the larger spike in the histogram above the distance 10.

Finally, there are some objects in the fundamental domain for which a diago-
nally displaced copy is visible. The length of this diagonal is

√
102 + 142 ≈ 17.2,

and this accounts for the third, smallest spike in the histogram.
Spikes appear in the PSH precisely because the torus universe C/Γ is con-

structed from isometries that move each point in the space by the same distance.
A transformation T of a metric space with the property that

d(p, T (p)) = d(q, T (q))

for all points p and q in the space is called aClifford translation. Any translation
in C is a Clifford translation; every point gets moved the same distance. However,
a rotation about the origin is not: the further a point is from the origin, the
further it moves. In the exercises you prove that non-trivial isometries in the
hyperbolic plane are not Clifford translations.

Recall that to create the PSH of a catalog in the cosmic crystallography
method we must first make an assumption about the geometry of the universe.
The PSH in Figure 8.2.6 was generated by computing the Euclidean distances
between points in the catalog. If we assumed a hyperbolic universe and used the
hyperbolic metric to produce the PSH, the spikes would vanish.
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In essence, the method of cosmic crystallography pours over catalogs of
astronomical objects, computing distances between all pairs of objects in the
catalog, and then looking for spikes in the pair separation histogram. The detection
of a spike in the histogram that cannot be reasonably explained by chance in the
distribution of objects indicates a finite universe.

The method of cosmic crystallography has limitations beyond the obvious
challenge of accurately measuring astronomical distances. As you will see in the
exercises, different shapes might produce identical spikes, so finding a spike in
a PSH doesn’t precisely determine the shape of our universe (though it would
certainly narrow down the list of candidates). All ten Euclidean 3-manifolds will
reveal a spike (or spikes) in the PSH if we can see far enough to detect the finite
dimensions. Some of the elliptic 3-manifolds will produce spikes in the PSH, but
no hyperbolic 3-manifold would reveal itself by this method, since hyperbolic
isometries are not Clifford translations.

To date, no statistically significant spikes have been found in the pair separation
histograms computed from real catalogs. Two good surveys of this method,
including information about generating simulated catalogs, can be found in [26]
and [24].

More sensitive methods have been proposed that might detect any 3-manifold,
regardless of geometry, and we look at one such method below.

Example 8.2.7 Collecting correlated pairs.

In a catalog of images, there are two types of pairs that might generate
recurring distances. The cosmic crystallography method outlined previously
detects what have been called Type II pairs in the literature: A Type II
pair is a pair of points of the form {p, T (p)}, where T is a transformation
from the group of isometries used to generate the manifold. If T transforms
each point the same distance (i.e., if T is a Clifford translation), then this
common distance will appear in the PSH as a spike.

The other type of recurring distance can arise from what’s been called
a Type I pair of points in the catalog. A Type I pair consists of any pair
{p, q} of points. If we can see images of these points in a copy of the
fundamental domain, say T (p), T (q), then since transformations preserve
distance, d(p, q) = d(T (p), T (q)), and this common distance will have
occurred at least twice in the PSH. The figure below shows a portion of
the torus tiling of the plane depicted in Figure 8.2.2. The two types of
pairs of points are visible: Type I pairs are joined by dashed segments,
and Type II pairs are joined by solid segments.
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Type I pairs will not produce discernible spikes in the PSH. Even
in simulations for which several images of a pair of points are present,
the spike generated by this set of pairs having the same distance is not
statistically significant.

The collecting correlated pairs (CCP) method, outlined below,
attempts to detect the Type I pairs in a catalog.

Suppose a catalog has N objects, and let P = N(N − 1)/2 denote the
number of pairs generated from this set. Compute all P distances between
pairs of objects, and order them from smallest to largest. Let ∆i denote
the difference between the (i+ 1)st distance and the ith distance. Notice
∆i ≥ 0 for all i, and i runs from 1 up to P − 1.

Now, ∆i = 0 for some i if two different pairs of objects in the catalog
have the same separation. It could be that unrelated pairs happen to have
the same distance, or that the two pairs responsible for ∆i = 0 are of the
form {p, q} and {T (p), T (q)} (Type I pairs). (We’re assuming there are
no type II pairs in the catalog.)

Let Z equal the number of the ∆i’s that equal zero. Then

R = Z

P − 1

denotes the proportion of the differentials that equal zero. This single
number is a measure, in some sense, of the likelihood of living in a multi-
connected universe.

In a real catalog involving estimations of distances, one wouldn’t expect
Type I pairs to produce identical distances, so instead of using Z as defined
above, one might let Zε equal the number of the ∆i’s that are less than ε,
where ε is some small positive number. For more details on this method,
see [28].

Exercises
1. The Klein Bottle. We may view the Klein bottle as a quotient of C by the

group of isometries generated by T1(z) = z + i and T2(z) = z + 1 + i. A
fundamental domain for the quotient is the unit square in C. The edges of
the square are identified as pictured. The a edges are identified as they would
be for a torus, but the b edges get identified with a twist.
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a

a

b b

1

i

Figure 8.2.8 Building the Klein bottle as a quotient of C.

a. Verify that T1 maps the bottom edge of the unit square to the top edge
of the unit square, and that T2 maps the left edge of the unit square to
the right edge with a twist.

b. Determine the inverse transformations T−1
1 and T−1

2 .

c. We may compose any number of these four transformations T1, T2, T
−1
1 ,

and T−1
2 to tile all of C with copies of the unit square. In the following

figure we have indicated in certain squares the transformation (built
from the four above) that moves the unit square into the indicated
square. Complete the figure below by indicating a composition of the
four transformations that maps the unit square to the indicated square
in C.

0 1

i

T−1
2 T2 T 2

2

T−1
1

T1

T 2
1

T1 ◦ T2

T−1
1 ◦ T2

d. Verify that T2 ◦ T1 = T−1
1 ◦ T2.

e. Show that T1 is a Clifford translation of C but T2 isn’t. It follows that
in a Klein bottle universe, cosmic crystallography would only be able to
detect one dimension of the Klein bottle.

2. Figure 8.2.9 shows a simulated catalog from a two-dimensional Euclidean
universe with the corresponding pair separation histogram. There are two
Euclidean surfaces: the Klein bottle and the torus. Based on the cosmic
crystallography analysis, what do you think is the shape of the universe?
Explain your answer. Also, make an estimate at the total area of the universe.
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Figure 8.2.9 A catalog of images for a two-dimensional Euclidean universe,
with corresponding PSH.

3. Prove that the transformation Ta in Example 7.7.11 used to generate the
two-holed torus as a quotient of D is not a Clifford translation. Can you
generalize the argument to show that any isometry in D that takes one edge
of a regular n-gon to another edge is not a Clifford translation?

4. A rough estimate for the number of images of an object one might see in a
catalog can be made by dividing the volume of space occupied by the catalog
by the volume of the Dirichlet domain at our position in the universe. Suppose
we live in an orientable two-dimensional universe. In fact, suppose we live in
Hg for some g ≥ 2, and our Dirichlet domain is the standard 4g-gon as in
Figure 7.5.24. Set the curvature of the universe to k = −1.

a. According to Gauss-Bonnet, what is the area of the Dirichlet domain?

b. What is the area of the observable universe, as a function of robs? That
is, what is the area of a circle in (D,H) with radius robs?

c. Determine the ratio of the area of the observable universe (A(O.U.)) to
the area of the fundamental domain (A(F.D.)). Your ratioA(O.U.)/A(F.D.)
will depend on robs and g.

d. Complete the following table in the case g = 2. Assume robs has units
in light-years.

Table 8.2.10 Estimating the number of images of an object one
might see in a catalog

robs A(O.U.) A(F.D.) Ratio
2
4
6
8

e. Repeat part (d) in two other cases: g = 4 and g = 6.

5. Repeat the previous exercise in the case of the non-orientable two-dimensional
universe, Cg.
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8.3 Circles in the Sky
Immediately after the big bang, the universe was so hot that the usual constituents
of matter could not form. Photons could not move freely in space, as they were
constantly bumping into free electrons. Eventually, about 350,000 years after the
big bang, the universe had expanded and cooled to the point that light could
travel unimpeded. This free radiation is called the cosmic microwave background
(CMB) radiation, and much of it is still travelling today. The universe has cooled
and expanded to the point that this radiation has stretched to the microwave end
of the electromagnetic spectrum, having a wavelength of about 1 or 2 millimeters.

The CMB radiation is coming to us from every direction, and it has all been
travelling for the same amount of time - and at the same speed. This means that
it has all traveled the same distance to reach us at this moment. Thus, we may
think of the CMB radiation that we can detect at this instant as having come
from the surface of a giant 2-sphere with us at the sphere’s center. This giant
2-sphere is called the last scattering surface (LSS).

It is perhaps comforting to think that everyone in the universe has their own
last scattering surface, that everyone’s LSS has the same radius, and that this
radius is growing in time.

The CMB radiation coming to us has a temperature that is remarkably uniform:
it is constant to a few parts in 100,000, which makes the temperature of the
radiation in the LSS very nearly perfectly uniform. As Craig Hogan points out
in [14], this is much smoother than a billiard ball. Nonetheless, there are slight
variations in the temperature. These variations, due to slight imbalances in the
distribution of matter in the early universe, were predicted well before they were
finally found (when our instruments became sensitive enough to detect them).
These very slight temperature differences might reveal the shape of the universe.

Imagine our universe is a giant 3-torus. Assume a fundamental domain for
the universe is a rectangular box as shown in Example 8.1.2, and that this box
is our Dirichlet domain (we’re at the center of this box). We may tile R3 with
copies of this fundamental domain, placing ourselves in the same position of each
copy of the fundamental domain. Now, imagine our last scattering surface in the
fundamental domain. In fact, there will be a copy of our last scattering surface
surrounding each copy of us in each copy of the fundamental domain.

If our last scattering surface is small relative to the size of the fundamental
domain, as in Figure 8.3.1(a), then it will not intersect any of its copies. However,
if the last scattering surface is large relative to the size of the fundamental domain,
as in Figure 8.3.1(b), then it will intersect one or more of its copies. Moreover,
adjacent copies of the LSS will intersect in a circle. In this happy case, our last
scattering surface will contain circles with matching temperature distributions.
Look again at Figure 8.3.1(b). We have three copies of our fundamental domain
pictured as well as three copies of the LSS (only one of which is shaded to make
the situation less cluttered). Two vertical circles of intersection appear in the
figure. From our point of view at the center of the LSS, the two images of the
circle will be directly opposite one another in the sky. Since these circles are
one and the same, the temperature distribution around the two circles will agree.
Therein lies the hope. Scan the temperature distribution in the last scattering
surface for matching circles.
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(a) (b)

Figure 8.3.1 The LSS compared to the size of a 3-torus universe. In (a) the LSS
is small, so it won’t reveal the shape of the universe; in (b) the LSS intersects
itself and will have circles of matching temperature distributions.

This strategy for detecting a finite universe is called the circles-in-the-sky
method, which, in cosmic topology, has advantages over the cosmic crystallography
method. In theory, the circles-in-the-sky method can be used to detect any compact
manifold, regardless of the geometry it admits. Also, the search for matching
circles is independent of a metric. One doesn’t need to make a claim about the
geometry of the universe to detect a finite universe.

This method is computationally very intensive. The search for matching
circles on this giant 2-sphere involves the analysis of a six parameter space: the
center (θ1, φ1) of one circle on the LSS, the center of the second circle (θ2, φ2),
the common angular radius α of the two circles (since these circles are copies of
the same circle they will have the same radius), and the relative phase of the
two circles, say β. (See the diagram that follows.) In general, β 6= 0 if the face
identifications in the 3-manifold involve rotations. It remains for us to analyze
whether a statistically significant correlation exists between the temperatures as
we proceed around the circles.

(θ1, φ1)

(θ2, φ2)

α

β

When comparing the size of the LSS relative to the size of space, it is convenient
to define the following length dimension. The injectivity radius at a point in a
manifold, denoted rinj , is half the distance of the shortest closed geodesic path
that starts and ends at that point. A necessary condition, then, for detecting
matching circles in the LSS at our location is that our observable radius robs
exceeds our injectivity radius rinj .
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Example 8.3.2 Detecting the 3-torus from the LSS.

If the universe is a 3-torus, and our LSS has diameter larger than some
dimension of the 3-torus, then the LSS will intersect copies of itself, and
the matching circles would be diametrically opposed to one another on
the LSS. Suppose our Dirichlet domain in a 3-torus universe is an a by b
by c box in R3, where a < b < c. Our LSS is then centered at the center
of the box. The injectivity radius of the universe is a/2. In the following
figure, we assume that robs, the radius of the LSS, is greater than a/2
but less than b/2. In this case, the circles-in-the-sky method would detect
one pair of matching circles in the temperature distribution of the LSS.
From the Earth E, we would observe that circle C1, when traced in the
counterclockwise direction, matches circle C2 when traced in the clockwise
direction, with no relative phase shift.

C1

C2

a

b

c

E

If the size is right, all six compact orientable Euclidean 3-manifolds would have
matching circles that are diametrically opposed to one another on the LSS. The
phase shift on these matching circles will be non-zero if the faces are identified
with a rotation.

Example 8.3.3 LSS in a Poincaré dodecahedral space.

If we live in a Poincaré dodecahedral space and our LSS is large enough, we
might see six pairs of matching circles, each pair consisting of diametrically
opposed circles in the sky with matching temperature distributions after
a relative phase shift of 36◦. The following figure indicates the matching
circles that would arise from the identification of the front face and rear
face of the dodecahedron. From the Earth E, we would observe that circle
C1 when traced in the counterclockwise direction matches circle C2 when
traced in the clockwise direction, with a phase shift of 36◦.

1

1

2

2

3

3

4

4

5

5

LSS

c1

c2

In general, the matching circles we (might) see can depend not only on
the shape of the universe, but also on where we happen to be in the universe.
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This follows because the Dirichlet domain can vary from point to point (see
Example 7.7.14 for the two-dimensional case). Of the 10 Euclidean 3-manifolds,
only the 3-torus has the feature that the Dirichlet domain is location independent.
Some (but not all) elliptic 3-manifolds have this feature, and in any hyperbolic
3-manifold, the Dirichlet domain depends on your location. Thus, if we do observe
matching circles, it can not only reveal topology but also the Earth’s location in
the universe.

Searches to date have focused on circles that are diametrically opposed to
one another on the LSS (or nearly so). This restriction reduces the search space
from six parameters to four. Happily, most detectable universe shapes would have
matching circles diametrically opposite one another, or nearly so. At the time of
this writing, no matching circles have been found, and this negative result places
bounds on the size of our universe. For instance, an article written by the people
who first realized a small finite universe would imprint itself on the LSS [19],
concludes from the absence of matching circles that the universe has topology
scale (i.e., injectivity radius rinj) bigger than 24 gigaparsecs, which works out to
24 × 3.26 × 109 ≈ 78 billion light-years. So, a geodesic closed path trip in the
universe would be at least 156 billion light-years long.

This stupendous distance is hard to fathom, but it appears safe to say that
we might abandon the possibility of gazing into the heavens and seeing a distant
image of our beloved Milky Way Galaxy.

In addition to [19], other accessible papers have been written on the circles-
in-the-sky method, as well as the cosmic crystallography method. (See [23], [26],
and [24].) Jeff Weeks also discusses both programs of research in The Shape of
Space, [12].

8.4 Our Universe
Our universe appears to be homogeneous and isotropic. The presence of cosmic
microwave background radiation is evidence of this: it is coming to us from
every direction with more or less constant temperature. This uniformity can be
explained by the inflationary universe theory. The theory, pioneered in the 1980s
by Alan Guth and others, states that during the first 10−30 seconds (or so) after
the big bang, the universe expanded at a stupendous rate, causing the universe
to appear homogeneous, isotropic, and also flat.

The assumptions of isotropy and homogeneity are remarkably fruitful when
one approaches the geometry and topology of the universe from a mathematical
point of view. Under these assumptions, three possibilities exist for the geometry
of the universe - the three geometries that have been the focus of this text.
Each geometry type has possible universe shapes attached to it, and Section 8.1
showcases some of the leading compact candidates.

The mathematical point of view gives us our candidate geometries, but at-
tempts at detecting the geometry from the mathematical theory have proved
unsuccessful. For instance, no enormous, cosmic triangle involving parallax has
produced an angle sum sufficiently different from π radians to rule out Euclidean
geometry.

Adopting a physical point of view, we have another way to approach the
geometry of the universe. Einstein’s theory of general relativity ties the geometry
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of the universe to its mass-energy content. If the universe has a high mass-energy
content, then the universe will have elliptic geometry. If the universe has a low
mass-energy content, then it will be hyperbolic. If it has just a precise amount,
called the critical mass density, the universe will be Euclidean. From a naive
point of view, this makes it seem highly unlikely that our universe is Euclidean.
If our mass-energy content deviates by the mass of just one hydrogen atom from
this critical amount, our universe fails to be Euclidean.

A little notation might be helpful. It turns out that from Einstein’s field
equations, the mass-energy density of the universe, ρ, is related to its curvature k
by the following equation, called the Friedmann Equation:

H2 = 8πG
3 ρ− k

a2 .

Here G is Newton’s gravitational constant; H is the Hubble constant measuring
the expansion rate of the universe; k = −1, 0, or 1 is the curvature constant;
and a is a scale factor. In fact, a and H are both changing in time, but may be
viewed as constant during the present period. Current estimates of H (see [17]
or [22]) are in the range of 68 to 70 kilometers per second per megaparsec, where
1 megaparsec is 3,260,000 light-years.

In a Euclidean universe, k = 0 and solving the Friedmann equation for ρ gives
us the critical density

ρc = 3H2

8πG .

This critical density is about 1.7× 10−29 grams per cubic centimeter, and is
the precise density required in a Euclidean universe.

We let Ω equal the ratio of the actual mass-energy density ρ of the universe
to the critical one ρc. That is,

Ω = ρ

ρc
.

Then, if Ω < 1 the universe is hyperbolic; if Ω > 1 the universe is elliptic; and
if Ω = 1 on the nose then it is Euclidean.

Until the late 1990s all estimates of the mass-energy content of the universe
put the value of Ω much less than 1, suggesting a hyperbolic universe. In fact,
different observational techniques for estimating the total mass-energy content of
the universe put the value of Ω at about 1/3, contrary to the value of 1 predicted
by the inflationary universe model.

But at the dawn of the 21st century, this all changed with detailed mea-
surements of the cosmic microwave background radiation, and the remarkable
discovery that the universe is expanding at an accelerated rate.

Careful analysis of the WMAP data on the cosmic background radiation1

suggests that the universe is flat, or nearly so, in agreement with the theory of
inflation. (This analysis is different than the circles in the sky method, which
searches for shape.) The five-year estimate from the WMAP data (see [21]) put
the value of Ω at

Ω = 1.0045± .013.

So if the mass-energy density is about 1/3 of what is required to get us to a
Euclidean universe, but it appears from the CMB that the universe is Euclidean, or

1The Wilkinson Microwave Anisotropy Probe was launched in 2001 to carefully plot the
temperature of the cosmic microwave background radiation.
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nearly so, some other form of energy must exist. Evidence for this was presented in
1999 (see, for instance, [18]) in the form of observations of distant exploding stars
called Type Ia supernovae. These distant supernovae are fainter than expected
for a universe whose expansion rate is slowing down, suggesting that the universe
is accelerating its expansion. In 2011, Saul Perlmutter, Brian Schmidt, and Adam
Riess won the Nobel Prize in Physics for their work on this discovery.

When Einstein first proposed the 3-sphere as the shape of the universe, his
theory predicted that the 3-sphere should be expanding or collapsing. The idea of
a static universe appealed to him, and he added a constant into his field equations,
called the cosmological constant, whose role was to counteract gravity and prevent
the universe from collapsing in on itself. But at roughly the same time, Edwin
Hubble, Vesto Slipher and others discovered that galaxies in every direction were
receding from us. Moreover, galaxies farther away were receding at a faster rate,
implying that the universe is expanding. Einstein withdrew his constant.

But now the constant has new life, as it can represent the repulsive dark energy
that seems to be counteracting gravity and driving the accelerated expansion of
the universe. So the density parameter in the Friedmann equation can have two
components: ρM , which is the mass-energy density associated with ordinary and
dark matter (the mass-energy density that cosmologists have been estimating by
observation); and ρΛ, which is the dark energy, due to the cosmological constant.
In this case, Friedmann’s equation becomes

H2 = 8πG
3 (ρM + ρΛ)− k

a2

and dividing by H2 we have

1 = 8πG
3H2 ρM + 8πG

3H2 ρΛ −
k

(aH)2 .

We let
ΩM = ρM

ρc
, ΩΛ = ρΛ

ρc
, Ωk = −k

(aH)2 .

So the simple equation

1 = ΩM + ΩΛ + Ωk

fundamentally describes the state of the universe. The inflationary universe model
suggests that Ωk ≈ 0, which is supported by recent reports. Nine-year analysis
of the WMAP data combined with measurements of the Type Ia Supernaovae
(see [22]) suggest

−0.0066 < Ωk < 0.0011,

with ΩΛ ≈ .72 and ΩM ≈ 0.28. As the universe evolves, the values of the density
parameters may change, though the sum will always equal one.

Now is probably as good a time as any to tell you that the fate of the universe
is tied to its mass-energy content and the nature of the dark energy, which is tied
to the the geometry of the universe, which is tied to the topology of the universe.

If the cosmological constant is zero then the relationship is simple: if Ω > 1 so
that we live in an elliptic 3-manifolds, the universe will eventually begin to fall
back on itself, ultimately experiencing a “big crunch”. If Ω = 1, a finite Euclidean
universe will have one of 10 possible shapes (6 if we insist on an orientable universe)
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and its expansion rate will asymptotically approach 0, but it will never begin
collapsing. If Ω < 1, the universe will continue to expand until everything is so
spread out we will experience a “big chill.”

With a nontrivial vacuum energy the situation changes. While the gravitational
force due to the usual mass-energy content of the universe tends to slow the
expansion of the universe, it seems the dark energy causes it to accelerate. Whether
the universe is hyperbolic, elliptic, or Euclidean, if the dark energy wins the tug of
war with gravity, the curvature of the universe would approach 0 as it continued to
accelerate its expansion, and the density of matter in the universe would approach
0.

The European Space Agency launched the Planck satellite in 2009. In its
orbit at a distance of 1.5 million kilometers from the Earth, the Planck satellite
has given us improved measurements of the CMB temperature, enabling sharper
estimates of cosmological parameters, as well as more refined data on which to
run circles-in-the-sky tests. Alas, no circles have been detected. Regarding the
curvature of the universe, the Planck team concludes in [17], in agreement with
the WMAP team, that our universe appears to be flat to a one standard deviation
accuracy of 0.25%.

In short, the universe appears to be homogeneous, isotropic, nearly flat, and
dominated by dark energy. The current estimates for Ωk leave the question of
the geometry of the universe open, though just barely. It is still possible that
our universe is a hyperbolic or an elliptic manifold, but the curvature would
have to be very close to 0. If the universe is a compact, orientable Euclidean
manifold, we have six different possibilities for its shape. Since Euclidean manifold
volumes aren’t fixed by curvature, there is no reason to expect the dimensions of
a Euclidean manifold to be close to the radius of the observable universe. But
if the size is right, the circles-in-the-sky method would reveal the shape of the
universe through matching circles.

Perhaps we will be treated to matching circles some day. Perhaps not. Perhaps
the universe is just too big. In any event, pursuing the question of the shape of
the universe is a remarkable feat of the human intellect. It is inspiring to think,
especially looking up at a clear, star filled night sky, that we might be able to
determine the shape of our universe, all without leaving our tiny planet.
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